Cargando…
Insights into modeling refractive index of ionic liquids using chemical structure-based machine learning methods
Ionic liquids (ILs) have drawn much attention due to their extensive applications and environment-friendly nature. Refractive index prediction is valuable for ILs quality control and property characterization. This paper aims to predict refractive indices of pure ILs and identify factors influencing...
Autores principales: | Esmaeili, Ali, Hekmatmehr, Hesamedin, Atashrouz, Saeid, Madani, Seyed Ali, Pourmahdi, Maryam, Nedeljkovic, Dragutin, Hemmati-Sarapardeh, Abdolhossein, Mohaddespour, Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366230/ https://www.ncbi.nlm.nih.gov/pubmed/37488224 http://dx.doi.org/10.1038/s41598-023-39079-5 |
Ejemplares similares
-
Solubility of gaseous hydrocarbons in ionic liquids using equations of state and machine learning approaches
por: Nakhaei-Kohani, Reza, et al.
Publicado: (2022) -
Toward empirical correlations for estimating the specific heat capacity of nanofluids utilizing GRG, GP, GEP, and GMDH
por: Deymi, Omid, et al.
Publicado: (2023) -
Viscosity of Ionic Liquids: Application of the Eyring’s Theory and a Committee Machine Intelligent System
por: Mousavi, Seyed Pezhman, et al.
Publicado: (2020) -
Modeling of H(2)S solubility in ionic liquids: comparison of white-box machine learning, deep learning and ensemble learning approaches
por: Mousavi, Seyed-Pezhman, et al.
Publicado: (2023) -
Modeling of nitrogen solubility in normal alkanes using machine learning methods compared with cubic and PC-SAFT equations of state
por: Madani, Seyed Ali, et al.
Publicado: (2021)