Cargando…

Electrophysiological damage to neuronal membrane alters ephaptic entrainment

The brain is commonly understood as a complex network system with a particular organization and topology that can result in specific electrophysiological patterns. Among all the dynamic elements resulting from the circuits of the brain’s network, ephapticity is a cellular communication mechanism tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Cunha, Gabriel Moreno, Corso, Gilberto, Lima, Marcelo M. S., dos Santos Lima, Gustavo Zampier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366241/
https://www.ncbi.nlm.nih.gov/pubmed/37488148
http://dx.doi.org/10.1038/s41598-023-38738-x
Descripción
Sumario:The brain is commonly understood as a complex network system with a particular organization and topology that can result in specific electrophysiological patterns. Among all the dynamic elements resulting from the circuits of the brain’s network, ephapticity is a cellular communication mechanism that has received little attention. To understand the network’s properties of ephaptic entrainment, we start investigating the ephaptic effect on a single neuron. In this study, we used numerical simulations to examine the relationship between alterations in ephaptic neuronal entrainment and impaired electrophysiological properties of the neuronal membrane, which can occur via spike field coherence (SFC). This change in frequency band amplitude is observed in some neurodegenerative diseases, such as Parkinson’s or Alzheimer’s. To further investigate these phenomena, we proposed a damaged model based on the impairment of both the resistance of the ion channels and the capacitance of the lipid membrane. Therefore, we simulated ephaptic entrainment with the hybrid neural model quadratic integrate-and-fire ephaptic (QIF-E), which mimics an ephaptic entrainment generated by an LFP (simulate a neuronal group). Our results indicate a link between peak entrainment (ephapticity) preference and a shift in frequency band when damage occurs mainly in ion channels. Finally, we discuss possible relationships between ephaptic entrainment and neurodegenerative diseases associated with aging factors.