Cargando…
Deep learning reconstruction with single-energy metal artifact reduction in pelvic computed tomography for patients with metal hip prostheses
PURPOSE: The aim of this study was to assess the impact of the deep learning reconstruction (DLR) with single-energy metal artifact reduction (SEMAR) (DLR-S) technique in pelvic helical computed tomography (CT) images for patients with metal hip prostheses and compare it with DLR and hybrid iterativ...
Autores principales: | Hosoi, Reina, Yasaka, Koichiro, Mizuki, Masumi, Yamaguchi, Haruomi, Miyo, Rintaro, Hamada, Akiyoshi, Abe, Osamu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366278/ https://www.ncbi.nlm.nih.gov/pubmed/36862290 http://dx.doi.org/10.1007/s11604-023-01402-5 |
Ejemplares similares
-
Deep-learning reconstruction for the evaluation of lumbar spinal stenosis in computed tomography
por: Miyo, Rintaro, et al.
Publicado: (2023) -
Comparison of Metal Artifact Reduction Algorithms in Patients with Hip Prostheses: Virtual Monoenergetic Images vs. Orthopedic Metal Artifact Reduction
Publicado: (2022) -
Reduction of metal artifacts from knee tumor prostheses on CT images: value of the single energy metal artifact reduction (SEMAR) algorithm
por: Zhang, Fang-ling, et al.
Publicado: (2021) -
Metal artifact reduction of orthopedics metal artifact reduction algorithm in total hip and knee arthroplasty
por: Zhang, Kesong, et al.
Publicado: (2020) -
Dosimetric impact of using a commercial metal artifact reduction tool in carbon ion therapy in patients with hip prostheses
por: Zhao, Jingfang, et al.
Publicado: (2021)