Cargando…

A method for real-time mechanical characterisation of microcapsules

Characterising the mechanical properties of flowing microcapsules is important from both fundamental and applied points of view. In the present study, we develop a novel multilayer perceptron (MLP)-based machine learning (ML) approach, for real-time simultaneous predictions of the membrane mechanica...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Ziyu, Lin, Tao, Jing, Dalei, Wang, Wen, Sui, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366294/
https://www.ncbi.nlm.nih.gov/pubmed/36964429
http://dx.doi.org/10.1007/s10237-023-01712-7
Descripción
Sumario:Characterising the mechanical properties of flowing microcapsules is important from both fundamental and applied points of view. In the present study, we develop a novel multilayer perceptron (MLP)-based machine learning (ML) approach, for real-time simultaneous predictions of the membrane mechanical law type, shear and area-dilatation moduli of microcapsules, from their camera-recorded steady profiles in tube flow. By MLP, we mean a neural network where many perceptrons are organised into layers. A perceptron is a basic element that conducts input–output mapping operation. We test the performance of the present approach using both simulation and experimental data. We find that with a reasonably high prediction accuracy, our method can reach an unprecedented low prediction latency of less than 1 millisecond on a personal computer. That is the overall computational time, without using parallel computing, from a single experimental image to multiple capsule mechanical parameters. It is faster than a recently proposed convolutional neural network-based approach by two orders of magnitude, for it only deals with the one-dimensional capsule boundary instead of the entire two-dimensional capsule image. Our new approach may serve as the foundation of a promising tool for real-time mechanical characterisation and online active sorting of deformable microcapsules and biological cells in microfluidic devices.