Cargando…
SAF: Stakeholders’ Agreement on Fairness in the Practice of Machine Learning Development
This paper clarifies why bias cannot be completely mitigated in Machine Learning (ML) and proposes an end-to-end methodology to translate the ethical principle of justice and fairness into the practice of ML development as an ongoing agreement with stakeholders. The pro-ethical iterative process pre...
Autores principales: | Curto, Georgina, Comim, Flavio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366323/ https://www.ncbi.nlm.nih.gov/pubmed/37486434 http://dx.doi.org/10.1007/s11948-023-00448-y |
Ejemplares similares
-
Are AI systems biased against the poor? A machine learning analysis using Word2Vec and GloVe embeddings
por: Curto, Georgina, et al.
Publicado: (2022) -
Gender and Age Stereotypes in Robotics for Eldercare: Ethical Implications of Stakeholder Perspectives from Technology Development, Industry, and Nursing
por: Weßel, Merle, et al.
Publicado: (2022) -
Exploring the Impact of Tensions in Stakeholder Norms on Designing for Value Change: The Case of Biosafety in Industrial Biotechnology
por: Asin-Garcia, Enrique, et al.
Publicado: (2023) -
Stakeholders’ Experiences of Research Integrity Support in Universities: A Qualitative Study in Three European Countries
por: Evans, Natalie, et al.
Publicado: (2022) -
Machine Learning Against Terrorism: How Big Data Collection and Analysis Influences the Privacy-Security Dilemma
por: Verhelst, H. M., et al.
Publicado: (2020)