Cargando…

Enhancing sustainability through resource efficiency in beef production systems using a sliding time window-based approach and frame scores

The food needs of the increasing global population, inefficiencies in supply chains, customer expectations and environmental concerns are the challenges to meeting resource-intensive protein needs sustainably. Collectively, this increases the need to enhance sustainability in the beef sector. This s...

Descripción completa

Detalles Bibliográficos
Autores principales: Ismail, Muhammad, Al-Ansari, Tareq
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366399/
https://www.ncbi.nlm.nih.gov/pubmed/37496899
http://dx.doi.org/10.1016/j.heliyon.2023.e17773
_version_ 1785077159662977024
author Ismail, Muhammad
Al-Ansari, Tareq
author_facet Ismail, Muhammad
Al-Ansari, Tareq
author_sort Ismail, Muhammad
collection PubMed
description The food needs of the increasing global population, inefficiencies in supply chains, customer expectations and environmental concerns are the challenges to meeting resource-intensive protein needs sustainably. Collectively, this increases the need to enhance sustainability in the beef sector. This study proposes a sliding time-window-based multi-period livestock production model using mixed-integer linear programming (MILP) to simultaneously balance economic and environmental losses. It identifies the optimal finishing time using frame score (FS) and feed conversion ratio (FCR), targeting flexibility by allowing variable growth periods to reduce food/nutritional losses while meeting the variability in demands with minimum inventory levels. Furthermore, sequencing and assigning animals to facilities with optimum separation time is applied to avoid bad handling of animals and ensure quality meat with hygienic standards for longer shelf life. The system boundary of the proposed model includes beef farms and processing facilities. Compared to the recently proposed batch processing models over seven months with a herd size of 1980 animals, the findings reduce the average forage needed by ∼126.90 kips and methane emissions by ∼2560 kg, with a significant benefit in terms of the live animals' weight gain by ∼10,276 lbs.
format Online
Article
Text
id pubmed-10366399
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-103663992023-07-26 Enhancing sustainability through resource efficiency in beef production systems using a sliding time window-based approach and frame scores Ismail, Muhammad Al-Ansari, Tareq Heliyon Research Article The food needs of the increasing global population, inefficiencies in supply chains, customer expectations and environmental concerns are the challenges to meeting resource-intensive protein needs sustainably. Collectively, this increases the need to enhance sustainability in the beef sector. This study proposes a sliding time-window-based multi-period livestock production model using mixed-integer linear programming (MILP) to simultaneously balance economic and environmental losses. It identifies the optimal finishing time using frame score (FS) and feed conversion ratio (FCR), targeting flexibility by allowing variable growth periods to reduce food/nutritional losses while meeting the variability in demands with minimum inventory levels. Furthermore, sequencing and assigning animals to facilities with optimum separation time is applied to avoid bad handling of animals and ensure quality meat with hygienic standards for longer shelf life. The system boundary of the proposed model includes beef farms and processing facilities. Compared to the recently proposed batch processing models over seven months with a herd size of 1980 animals, the findings reduce the average forage needed by ∼126.90 kips and methane emissions by ∼2560 kg, with a significant benefit in terms of the live animals' weight gain by ∼10,276 lbs. Elsevier 2023-07-04 /pmc/articles/PMC10366399/ /pubmed/37496899 http://dx.doi.org/10.1016/j.heliyon.2023.e17773 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Ismail, Muhammad
Al-Ansari, Tareq
Enhancing sustainability through resource efficiency in beef production systems using a sliding time window-based approach and frame scores
title Enhancing sustainability through resource efficiency in beef production systems using a sliding time window-based approach and frame scores
title_full Enhancing sustainability through resource efficiency in beef production systems using a sliding time window-based approach and frame scores
title_fullStr Enhancing sustainability through resource efficiency in beef production systems using a sliding time window-based approach and frame scores
title_full_unstemmed Enhancing sustainability through resource efficiency in beef production systems using a sliding time window-based approach and frame scores
title_short Enhancing sustainability through resource efficiency in beef production systems using a sliding time window-based approach and frame scores
title_sort enhancing sustainability through resource efficiency in beef production systems using a sliding time window-based approach and frame scores
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366399/
https://www.ncbi.nlm.nih.gov/pubmed/37496899
http://dx.doi.org/10.1016/j.heliyon.2023.e17773
work_keys_str_mv AT ismailmuhammad enhancingsustainabilitythroughresourceefficiencyinbeefproductionsystemsusingaslidingtimewindowbasedapproachandframescores
AT alansaritareq enhancingsustainabilitythroughresourceefficiencyinbeefproductionsystemsusingaslidingtimewindowbasedapproachandframescores