Cargando…
Statistically significant features improve binary and multiple Motor Imagery task predictions from EEGs
In recent studies, in the field of Brain-Computer Interface (BCI), researchers have focused on Motor Imagery tasks. Motor Imagery-based electroencephalogram (EEG) signals provide the interaction and communication between the paralyzed patients and the outside world for moving and controlling externa...
Autores principales: | Degirmenci, Murside, Yuce, Yilmaz Kemal, Perc, Matjaž, Isler, Yalcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366537/ https://www.ncbi.nlm.nih.gov/pubmed/37497042 http://dx.doi.org/10.3389/fnhum.2023.1223307 |
Ejemplares similares
-
Directional Decoding From EEG in a Center-Out Motor Imagery Task With Visual and Vibrotactile Guidance
por: Hehenberger, Lea, et al.
Publicado: (2021) -
Closed-loop motor imagery EEG simulation for brain-computer interfaces
por: Shin, Hyonyoung, et al.
Publicado: (2022) -
Data Augmentation: Using Channel-Level Recombination to Improve Classification Performance for Motor Imagery EEG
por: Pei, Yu, et al.
Publicado: (2021) -
Co-adaptive Training Improves Efficacy of a Multi-Day EEG-Based Motor Imagery BCI Training
por: Abu-Rmileh, Amjad, et al.
Publicado: (2019) -
Stabilometric Correlates of Motor and Motor Imagery Expertise
por: Di Rienzo, Franck, et al.
Publicado: (2022)