Cargando…
Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes
OBJECTIVE: To achieve instance segmentation of upper aerodigestive tract (UADT) neoplasms using a deep learning (DL) algorithm, and to identify differences in its diagnostic performance in three different sites: larynx/hypopharynx, oral cavity and oropharynx. METHODS: A total of 1034 endoscopic imag...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pacini Editore Srl
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366566/ https://www.ncbi.nlm.nih.gov/pubmed/37488992 http://dx.doi.org/10.14639/0392-100X-N2336 |
_version_ | 1785077194390765568 |
---|---|
author | Paderno, Alberto Villani, Francesca Pia Fior, Milena Berretti, Giulia Gennarini, Francesca Zigliani, Gabriele Ulaj, Emanuela Montenegro, Claudia Sordi, Alessandra Sampieri, Claudio Peretti, Giorgio Moccia, Sara Piazza, Cesare |
author_facet | Paderno, Alberto Villani, Francesca Pia Fior, Milena Berretti, Giulia Gennarini, Francesca Zigliani, Gabriele Ulaj, Emanuela Montenegro, Claudia Sordi, Alessandra Sampieri, Claudio Peretti, Giorgio Moccia, Sara Piazza, Cesare |
author_sort | Paderno, Alberto |
collection | PubMed |
description | OBJECTIVE: To achieve instance segmentation of upper aerodigestive tract (UADT) neoplasms using a deep learning (DL) algorithm, and to identify differences in its diagnostic performance in three different sites: larynx/hypopharynx, oral cavity and oropharynx. METHODS: A total of 1034 endoscopic images from 323 patients were examined under narrow band imaging (NBI). The Mask R-CNN algorithm was used for the analysis. The dataset split was: 935 training, 48 validation and 51 testing images. Dice Similarity Coefficient (Dsc) was the main outcome measure. RESULTS: Instance segmentation was effective in 76.5% of images. The mean Dsc was 0.90 ± 0.05. The algorithm correctly predicted 77.8%, 86.7% and 55.5% of lesions in the larynx/hypopharynx, oral cavity, and oropharynx, respectively. The mean Dsc was 0.90 ± 0.05 for the larynx/hypopharynx, 0.60 ± 0.26 for the oral cavity, and 0.81 ± 0.30 for the oropharynx. The analysis showed inferior diagnostic results in the oral cavity compared with the larynx/hypopharynx (p < 0.001). CONCLUSIONS: The study confirms the feasibility of instance segmentation of UADT using DL algorithms and shows inferior diagnostic results in the oral cavity compared with other anatomic areas. |
format | Online Article Text |
id | pubmed-10366566 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Pacini Editore Srl |
record_format | MEDLINE/PubMed |
spelling | pubmed-103665662023-08-01 Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes Paderno, Alberto Villani, Francesca Pia Fior, Milena Berretti, Giulia Gennarini, Francesca Zigliani, Gabriele Ulaj, Emanuela Montenegro, Claudia Sordi, Alessandra Sampieri, Claudio Peretti, Giorgio Moccia, Sara Piazza, Cesare Acta Otorhinolaryngol Ital Clinical Techniques and Technologies OBJECTIVE: To achieve instance segmentation of upper aerodigestive tract (UADT) neoplasms using a deep learning (DL) algorithm, and to identify differences in its diagnostic performance in three different sites: larynx/hypopharynx, oral cavity and oropharynx. METHODS: A total of 1034 endoscopic images from 323 patients were examined under narrow band imaging (NBI). The Mask R-CNN algorithm was used for the analysis. The dataset split was: 935 training, 48 validation and 51 testing images. Dice Similarity Coefficient (Dsc) was the main outcome measure. RESULTS: Instance segmentation was effective in 76.5% of images. The mean Dsc was 0.90 ± 0.05. The algorithm correctly predicted 77.8%, 86.7% and 55.5% of lesions in the larynx/hypopharynx, oral cavity, and oropharynx, respectively. The mean Dsc was 0.90 ± 0.05 for the larynx/hypopharynx, 0.60 ± 0.26 for the oral cavity, and 0.81 ± 0.30 for the oropharynx. The analysis showed inferior diagnostic results in the oral cavity compared with the larynx/hypopharynx (p < 0.001). CONCLUSIONS: The study confirms the feasibility of instance segmentation of UADT using DL algorithms and shows inferior diagnostic results in the oral cavity compared with other anatomic areas. Pacini Editore Srl 2023-08-01 2023-08 /pmc/articles/PMC10366566/ /pubmed/37488992 http://dx.doi.org/10.14639/0392-100X-N2336 Text en Società Italiana di Otorinolaringoiatria e Chirurgia Cervico-Facciale, Rome, Italy https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed in accordance with the CC-BY-NC-ND (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International) license. The article can be used by giving appropriate credit and mentioning the license, but only for non-commercial purposes and only in the original version. For further information: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en |
spellingShingle | Clinical Techniques and Technologies Paderno, Alberto Villani, Francesca Pia Fior, Milena Berretti, Giulia Gennarini, Francesca Zigliani, Gabriele Ulaj, Emanuela Montenegro, Claudia Sordi, Alessandra Sampieri, Claudio Peretti, Giorgio Moccia, Sara Piazza, Cesare Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes |
title | Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes |
title_full | Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes |
title_fullStr | Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes |
title_full_unstemmed | Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes |
title_short | Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes |
title_sort | instance segmentation of upper aerodigestive tract cancer: site-specific outcomes |
topic | Clinical Techniques and Technologies |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366566/ https://www.ncbi.nlm.nih.gov/pubmed/37488992 http://dx.doi.org/10.14639/0392-100X-N2336 |
work_keys_str_mv | AT padernoalberto instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes AT villanifrancescapia instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes AT fiormilena instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes AT berrettigiulia instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes AT gennarinifrancesca instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes AT ziglianigabriele instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes AT ulajemanuela instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes AT montenegroclaudia instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes AT sordialessandra instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes AT sampiericlaudio instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes AT perettigiorgio instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes AT mocciasara instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes AT piazzacesare instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes |