Cargando…

Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes

OBJECTIVE: To achieve instance segmentation of upper aerodigestive tract (UADT) neoplasms using a deep learning (DL) algorithm, and to identify differences in its diagnostic performance in three different sites: larynx/hypopharynx, oral cavity and oropharynx. METHODS: A total of 1034 endoscopic imag...

Descripción completa

Detalles Bibliográficos
Autores principales: Paderno, Alberto, Villani, Francesca Pia, Fior, Milena, Berretti, Giulia, Gennarini, Francesca, Zigliani, Gabriele, Ulaj, Emanuela, Montenegro, Claudia, Sordi, Alessandra, Sampieri, Claudio, Peretti, Giorgio, Moccia, Sara, Piazza, Cesare
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pacini Editore Srl 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366566/
https://www.ncbi.nlm.nih.gov/pubmed/37488992
http://dx.doi.org/10.14639/0392-100X-N2336
_version_ 1785077194390765568
author Paderno, Alberto
Villani, Francesca Pia
Fior, Milena
Berretti, Giulia
Gennarini, Francesca
Zigliani, Gabriele
Ulaj, Emanuela
Montenegro, Claudia
Sordi, Alessandra
Sampieri, Claudio
Peretti, Giorgio
Moccia, Sara
Piazza, Cesare
author_facet Paderno, Alberto
Villani, Francesca Pia
Fior, Milena
Berretti, Giulia
Gennarini, Francesca
Zigliani, Gabriele
Ulaj, Emanuela
Montenegro, Claudia
Sordi, Alessandra
Sampieri, Claudio
Peretti, Giorgio
Moccia, Sara
Piazza, Cesare
author_sort Paderno, Alberto
collection PubMed
description OBJECTIVE: To achieve instance segmentation of upper aerodigestive tract (UADT) neoplasms using a deep learning (DL) algorithm, and to identify differences in its diagnostic performance in three different sites: larynx/hypopharynx, oral cavity and oropharynx. METHODS: A total of 1034 endoscopic images from 323 patients were examined under narrow band imaging (NBI). The Mask R-CNN algorithm was used for the analysis. The dataset split was: 935 training, 48 validation and 51 testing images. Dice Similarity Coefficient (Dsc) was the main outcome measure. RESULTS: Instance segmentation was effective in 76.5% of images. The mean Dsc was 0.90 ± 0.05. The algorithm correctly predicted 77.8%, 86.7% and 55.5% of lesions in the larynx/hypopharynx, oral cavity, and oropharynx, respectively. The mean Dsc was 0.90 ± 0.05 for the larynx/hypopharynx, 0.60 ± 0.26 for the oral cavity, and 0.81 ± 0.30 for the oropharynx. The analysis showed inferior diagnostic results in the oral cavity compared with the larynx/hypopharynx (p < 0.001). CONCLUSIONS: The study confirms the feasibility of instance segmentation of UADT using DL algorithms and shows inferior diagnostic results in the oral cavity compared with other anatomic areas.
format Online
Article
Text
id pubmed-10366566
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Pacini Editore Srl
record_format MEDLINE/PubMed
spelling pubmed-103665662023-08-01 Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes Paderno, Alberto Villani, Francesca Pia Fior, Milena Berretti, Giulia Gennarini, Francesca Zigliani, Gabriele Ulaj, Emanuela Montenegro, Claudia Sordi, Alessandra Sampieri, Claudio Peretti, Giorgio Moccia, Sara Piazza, Cesare Acta Otorhinolaryngol Ital Clinical Techniques and Technologies OBJECTIVE: To achieve instance segmentation of upper aerodigestive tract (UADT) neoplasms using a deep learning (DL) algorithm, and to identify differences in its diagnostic performance in three different sites: larynx/hypopharynx, oral cavity and oropharynx. METHODS: A total of 1034 endoscopic images from 323 patients were examined under narrow band imaging (NBI). The Mask R-CNN algorithm was used for the analysis. The dataset split was: 935 training, 48 validation and 51 testing images. Dice Similarity Coefficient (Dsc) was the main outcome measure. RESULTS: Instance segmentation was effective in 76.5% of images. The mean Dsc was 0.90 ± 0.05. The algorithm correctly predicted 77.8%, 86.7% and 55.5% of lesions in the larynx/hypopharynx, oral cavity, and oropharynx, respectively. The mean Dsc was 0.90 ± 0.05 for the larynx/hypopharynx, 0.60 ± 0.26 for the oral cavity, and 0.81 ± 0.30 for the oropharynx. The analysis showed inferior diagnostic results in the oral cavity compared with the larynx/hypopharynx (p < 0.001). CONCLUSIONS: The study confirms the feasibility of instance segmentation of UADT using DL algorithms and shows inferior diagnostic results in the oral cavity compared with other anatomic areas. Pacini Editore Srl 2023-08-01 2023-08 /pmc/articles/PMC10366566/ /pubmed/37488992 http://dx.doi.org/10.14639/0392-100X-N2336 Text en Società Italiana di Otorinolaringoiatria e Chirurgia Cervico-Facciale, Rome, Italy https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed in accordance with the CC-BY-NC-ND (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International) license. The article can be used by giving appropriate credit and mentioning the license, but only for non-commercial purposes and only in the original version. For further information: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
spellingShingle Clinical Techniques and Technologies
Paderno, Alberto
Villani, Francesca Pia
Fior, Milena
Berretti, Giulia
Gennarini, Francesca
Zigliani, Gabriele
Ulaj, Emanuela
Montenegro, Claudia
Sordi, Alessandra
Sampieri, Claudio
Peretti, Giorgio
Moccia, Sara
Piazza, Cesare
Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes
title Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes
title_full Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes
title_fullStr Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes
title_full_unstemmed Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes
title_short Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes
title_sort instance segmentation of upper aerodigestive tract cancer: site-specific outcomes
topic Clinical Techniques and Technologies
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366566/
https://www.ncbi.nlm.nih.gov/pubmed/37488992
http://dx.doi.org/10.14639/0392-100X-N2336
work_keys_str_mv AT padernoalberto instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes
AT villanifrancescapia instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes
AT fiormilena instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes
AT berrettigiulia instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes
AT gennarinifrancesca instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes
AT ziglianigabriele instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes
AT ulajemanuela instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes
AT montenegroclaudia instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes
AT sordialessandra instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes
AT sampiericlaudio instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes
AT perettigiorgio instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes
AT mocciasara instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes
AT piazzacesare instancesegmentationofupperaerodigestivetractcancersitespecificoutcomes