Cargando…
Heterologous Production of Artemisinin in Physcomitrium patens by Direct in vivo Assembly of Multiple DNA Fragments
The sesquiterpene lactone compound artemisinin is a natural medicinal product of commercial importance. This Artemisia annua–derived secondary metabolite is well known for its antimalarial activity and has been studied in several other biological assays. However, the major shortcoming in its product...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bio-Protocol
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366679/ https://www.ncbi.nlm.nih.gov/pubmed/37497445 http://dx.doi.org/10.21769/BioProtoc.4719 |
_version_ | 1785077220008525824 |
---|---|
author | Ikram, Nur Kusaira Khairul Zakariya, Ali Muhammad Saiman, Mohd Zuwairi Kashkooli, Arman Beyraghdar Simonsen, Henrik Toft |
author_facet | Ikram, Nur Kusaira Khairul Zakariya, Ali Muhammad Saiman, Mohd Zuwairi Kashkooli, Arman Beyraghdar Simonsen, Henrik Toft |
author_sort | Ikram, Nur Kusaira Khairul |
collection | PubMed |
description | The sesquiterpene lactone compound artemisinin is a natural medicinal product of commercial importance. This Artemisia annua–derived secondary metabolite is well known for its antimalarial activity and has been studied in several other biological assays. However, the major shortcoming in its production and commercialization is its low accumulation in the native plant. Moreover, the chemical synthesis of artemisinin is difficult and expensive due to its complex structure. Hence, an alternative and sustainable production system of artemisinin in a heterologous host is required. Previously, heterologous production of artemisinin was achieved by Agrobacterium-mediated transformation. However, this requires extensive bioengineering of modified Nicotiana plants. Recently, a technique involving direct in vivo assembly of multiple DNA fragments in the moss, P. patens, has been successfully established. We utilized this technique to engineer artemisinin biosynthetic pathway genes into the moss, and artemisinin was obtained without further modifications with high initial production. Here, we provide protocols for establishing moss culture accumulating artemisinin, including culture preparation, transformation method, and compound detection via HS-SPME, UPLC-MRM-MS, and LC-QTOF-MS. The bioengineering of moss opens up a more sustainable, cost effective, and scalable platform not only in artemisinin production but also other high-value specialized metabolites in the future. |
format | Online Article Text |
id | pubmed-10366679 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Bio-Protocol |
record_format | MEDLINE/PubMed |
spelling | pubmed-103666792023-07-26 Heterologous Production of Artemisinin in Physcomitrium patens by Direct in vivo Assembly of Multiple DNA Fragments Ikram, Nur Kusaira Khairul Zakariya, Ali Muhammad Saiman, Mohd Zuwairi Kashkooli, Arman Beyraghdar Simonsen, Henrik Toft Bio Protoc Methods Article The sesquiterpene lactone compound artemisinin is a natural medicinal product of commercial importance. This Artemisia annua–derived secondary metabolite is well known for its antimalarial activity and has been studied in several other biological assays. However, the major shortcoming in its production and commercialization is its low accumulation in the native plant. Moreover, the chemical synthesis of artemisinin is difficult and expensive due to its complex structure. Hence, an alternative and sustainable production system of artemisinin in a heterologous host is required. Previously, heterologous production of artemisinin was achieved by Agrobacterium-mediated transformation. However, this requires extensive bioengineering of modified Nicotiana plants. Recently, a technique involving direct in vivo assembly of multiple DNA fragments in the moss, P. patens, has been successfully established. We utilized this technique to engineer artemisinin biosynthetic pathway genes into the moss, and artemisinin was obtained without further modifications with high initial production. Here, we provide protocols for establishing moss culture accumulating artemisinin, including culture preparation, transformation method, and compound detection via HS-SPME, UPLC-MRM-MS, and LC-QTOF-MS. The bioengineering of moss opens up a more sustainable, cost effective, and scalable platform not only in artemisinin production but also other high-value specialized metabolites in the future. Bio-Protocol 2023-07-20 /pmc/articles/PMC10366679/ /pubmed/37497445 http://dx.doi.org/10.21769/BioProtoc.4719 Text en ©Copyright : © 2023 The Authors; This is an open access article under the CC BY-NC license https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/). |
spellingShingle | Methods Article Ikram, Nur Kusaira Khairul Zakariya, Ali Muhammad Saiman, Mohd Zuwairi Kashkooli, Arman Beyraghdar Simonsen, Henrik Toft Heterologous Production of Artemisinin in Physcomitrium patens by Direct in vivo Assembly of Multiple DNA Fragments |
title | Heterologous Production of Artemisinin in Physcomitrium patens by Direct in vivo Assembly of Multiple DNA Fragments |
title_full | Heterologous Production of Artemisinin in Physcomitrium patens by Direct in vivo Assembly of Multiple DNA Fragments |
title_fullStr | Heterologous Production of Artemisinin in Physcomitrium patens by Direct in vivo Assembly of Multiple DNA Fragments |
title_full_unstemmed | Heterologous Production of Artemisinin in Physcomitrium patens by Direct in vivo Assembly of Multiple DNA Fragments |
title_short | Heterologous Production of Artemisinin in Physcomitrium patens by Direct in vivo Assembly of Multiple DNA Fragments |
title_sort | heterologous production of artemisinin in physcomitrium patens by direct in vivo assembly of multiple dna fragments |
topic | Methods Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366679/ https://www.ncbi.nlm.nih.gov/pubmed/37497445 http://dx.doi.org/10.21769/BioProtoc.4719 |
work_keys_str_mv | AT ikramnurkusairakhairul heterologousproductionofartemisinininphyscomitriumpatensbydirectinvivoassemblyofmultiplednafragments AT zakariyaalimuhammad heterologousproductionofartemisinininphyscomitriumpatensbydirectinvivoassemblyofmultiplednafragments AT saimanmohdzuwairi heterologousproductionofartemisinininphyscomitriumpatensbydirectinvivoassemblyofmultiplednafragments AT kashkooliarmanbeyraghdar heterologousproductionofartemisinininphyscomitriumpatensbydirectinvivoassemblyofmultiplednafragments AT simonsenhenriktoft heterologousproductionofartemisinininphyscomitriumpatensbydirectinvivoassemblyofmultiplednafragments |