Cargando…
SI-PET-RAFT in flow: improved control over polymer brush growth
Surface-initiated photoinduced electron transfer-reversible addition–fragmentation chain transfer (SI-PET-RAFT) provides a light-dependent tool to synthesize polymer brushes on different surfaces that tolerates oxygen and water, and does not require a metal catalyst. Here we introduce improved contr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367056/ https://www.ncbi.nlm.nih.gov/pubmed/37497044 http://dx.doi.org/10.1039/d3py00488k |
_version_ | 1785077305895288832 |
---|---|
author | Kuzmyn, Andriy R. van Galen, Martijn van Lagen, Barend Zuilhof, Han |
author_facet | Kuzmyn, Andriy R. van Galen, Martijn van Lagen, Barend Zuilhof, Han |
author_sort | Kuzmyn, Andriy R. |
collection | PubMed |
description | Surface-initiated photoinduced electron transfer-reversible addition–fragmentation chain transfer (SI-PET-RAFT) provides a light-dependent tool to synthesize polymer brushes on different surfaces that tolerates oxygen and water, and does not require a metal catalyst. Here we introduce improved control over SI-PET-RAFT polymerizations via continuous flow conditions. We confirm the composition and topological structure of the brushes by X-ray photoelectron spectroscopy, ellipsometry, and AFM. The improved control compared to no-flow conditions provides prolonged linear growth of the polymer brush (up to 250 nm, where no-flow polymerization maxed out <50 nm), and improved polymerization control of the polymer brush that allows the construction of diblock polymer brushes. We further show the linear correlation between the molecular weight of the polymer brush and its dry thickness by combining ellipsometry and single-molecule force spectroscopy. |
format | Online Article Text |
id | pubmed-10367056 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-103670562023-07-26 SI-PET-RAFT in flow: improved control over polymer brush growth Kuzmyn, Andriy R. van Galen, Martijn van Lagen, Barend Zuilhof, Han Polym Chem Chemistry Surface-initiated photoinduced electron transfer-reversible addition–fragmentation chain transfer (SI-PET-RAFT) provides a light-dependent tool to synthesize polymer brushes on different surfaces that tolerates oxygen and water, and does not require a metal catalyst. Here we introduce improved control over SI-PET-RAFT polymerizations via continuous flow conditions. We confirm the composition and topological structure of the brushes by X-ray photoelectron spectroscopy, ellipsometry, and AFM. The improved control compared to no-flow conditions provides prolonged linear growth of the polymer brush (up to 250 nm, where no-flow polymerization maxed out <50 nm), and improved polymerization control of the polymer brush that allows the construction of diblock polymer brushes. We further show the linear correlation between the molecular weight of the polymer brush and its dry thickness by combining ellipsometry and single-molecule force spectroscopy. The Royal Society of Chemistry 2023-06-12 /pmc/articles/PMC10367056/ /pubmed/37497044 http://dx.doi.org/10.1039/d3py00488k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Kuzmyn, Andriy R. van Galen, Martijn van Lagen, Barend Zuilhof, Han SI-PET-RAFT in flow: improved control over polymer brush growth |
title | SI-PET-RAFT in flow: improved control over polymer brush growth |
title_full | SI-PET-RAFT in flow: improved control over polymer brush growth |
title_fullStr | SI-PET-RAFT in flow: improved control over polymer brush growth |
title_full_unstemmed | SI-PET-RAFT in flow: improved control over polymer brush growth |
title_short | SI-PET-RAFT in flow: improved control over polymer brush growth |
title_sort | si-pet-raft in flow: improved control over polymer brush growth |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367056/ https://www.ncbi.nlm.nih.gov/pubmed/37497044 http://dx.doi.org/10.1039/d3py00488k |
work_keys_str_mv | AT kuzmynandriyr sipetraftinflowimprovedcontroloverpolymerbrushgrowth AT vangalenmartijn sipetraftinflowimprovedcontroloverpolymerbrushgrowth AT vanlagenbarend sipetraftinflowimprovedcontroloverpolymerbrushgrowth AT zuilhofhan sipetraftinflowimprovedcontroloverpolymerbrushgrowth |