Cargando…
Combination of personalized computational modeling and machine learning for optimization of left ventricular pacing site in cardiac resynchronization therapy
Introduction: The 30–50% non-response rate to cardiac resynchronization therapy (CRT) calls for improved patient selection and optimized pacing lead placement. The study aimed to develop a novel technique using patient-specific cardiac models and machine learning (ML) to predict an optimal left vent...
Autores principales: | Dokuchaev, Arsenii, Chumarnaya, Tatiana, Bazhutina, Anastasia, Khamzin, Svyatoslav, Lebedeva, Viktoria, Lyubimtseva, Tamara, Zubarev, Stepan, Lebedev, Dmitry, Solovyova, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367108/ https://www.ncbi.nlm.nih.gov/pubmed/37497440 http://dx.doi.org/10.3389/fphys.2023.1162520 |
Ejemplares similares
-
Machine Learning Prediction of Cardiac Resynchronisation Therapy Response From Combination of Clinical and Model-Driven Data
por: Khamzin, Svyatoslav, et al.
Publicado: (2021) -
The importance of mechanical conditions in the testing of excitation abnormalities in a population of electro-mechanical models of human ventricular cardiomyocytes
por: Dokuchaev, Arsenii, et al.
Publicado: (2023) -
Gaussian Process Regressions for Inverse Problems and Parameter Searches in Models of Ventricular Mechanics
por: Di Achille, Paolo, et al.
Publicado: (2018) -
Clinical evaluation of the new 12-lead ECG noninvasive epi-endocardial mapping technology
por: Chmelevsky, M, et al.
Publicado: (2023) -
Ventricular tachycardia prediction in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death
por: Lebedeva, Viktoria K., et al.
Publicado: (2018)