Cargando…
Bayesian Optimization for Design of Multiscale Biological Circuits
[Image: see text] Recent advances in synthetic biology have enabled the construction of molecular circuits that operate across multiple scales of cellular organization, such as gene regulation, signaling pathways, and cellular metabolism. Computational optimization can effectively aid the design pro...
Autores principales: | Merzbacher, Charlotte, Mac Aodha, Oisin, Oyarzún, Diego A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367132/ https://www.ncbi.nlm.nih.gov/pubmed/37339382 http://dx.doi.org/10.1021/acssynbio.3c00120 |
Ejemplares similares
-
Publisher Correction: Accuracy and data efficiency in deep learning models of protein expression
por: Nikolados, Evangelos-Marios, et al.
Publicado: (2023) -
Accuracy and data efficiency in deep learning models of protein expression
por: Nikolados, Evangelos-Marios, et al.
Publicado: (2022) -
Applications of artificial intelligence and machine learning in dynamic pathway engineering
por: Merzbacher, Charlotte, et al.
Publicado: (2023) -
Synthetic gene circuits for metabolic control: design trade-offs and constraints
por: Oyarzún, Diego A., et al.
Publicado: (2013) -
Multiscale modeling: a bayesian perspective
por: Ferreira, Marco A R, et al.
Publicado: (2007)