Cargando…

Practical and Scalable Two-Step Process for 6-(2-Fluoro-4-nitrophenyl)-2-oxa-6-azaspiro[3.3]heptane: A Key Intermediate of the Potent Antibiotic Drug Candidate TBI-223

[Image: see text] A low-cost, protecting group-free route to 6-(2-fluoro-4-nitrophenyl)-2-oxa-6-azaspiro[3.3]heptane (1), the starting material for the in-development tuberculosis treatment TBI-223, is described. The key bond forming step in this route is the creation of the azetidine ring through a...

Descripción completa

Detalles Bibliográficos
Autores principales: Cardoso, Flavio S.P., Kadam, Appasaheb L., Nelson, Ryan C., Tomlin, John W., Dahal, Dipendra, Kuehner, Christopher S., Gudvangen, Gard, Arduengo, Anthony J., Burns, Justina M., Aleshire, Sarah L., Snead, David R., Qu, Fengrui, Belmore, Ken, Ahmad, Saeed, Agrawal, Toolika, Sieber, Joshua D., Donsbach, Kai Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367134/
https://www.ncbi.nlm.nih.gov/pubmed/37496954
http://dx.doi.org/10.1021/acs.oprd.3c00148
Descripción
Sumario:[Image: see text] A low-cost, protecting group-free route to 6-(2-fluoro-4-nitrophenyl)-2-oxa-6-azaspiro[3.3]heptane (1), the starting material for the in-development tuberculosis treatment TBI-223, is described. The key bond forming step in this route is the creation of the azetidine ring through a hydroxide-facilitated alkylation of 2-fluoro-4-nitroaniline (2) with 3,3-bis(bromomethyl)oxetane (BBMO, 3). After optimization, this ring formation reaction was demonstrated at 100 g scale with isolated yield of 87% and final product purity of >99%. The alkylating agent 3 was synthesized using an optimized procedure that starts from tribromoneopentyl alcohol (TBNPA, 4), a commercially available flame retardant. Treatment of 4 with sodium hydroxide under Schotten–Baumann conditions closed the oxetane ring, and after distillation, 3 was recovered in 72% yield and >95% purity. This new approach to compound 1 avoids the previous drawbacks associated with the synthesis of 2-oxa-6-azaspiro[3,3]heptane (5), the major cost driver used in previous routes to TBI-223. The optimization and multigram scale-up results for this new route are reported herein.