Cargando…
Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits
BACKGROUND: Rumen microbes break down complex dietary carbohydrates into energy sources for the host and are increasingly shown to be a key aspect of animal performance. Host genotypes can be combined with microbial DNA sequencing to predict performance traits or traits related to environmental impa...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367317/ https://www.ncbi.nlm.nih.gov/pubmed/37491204 http://dx.doi.org/10.1186/s12711-023-00822-1 |
_version_ | 1785077363739983872 |
---|---|
author | Hess, Melanie K. Zetouni, Larissa Hess, Andrew S. Budel, Juliana Dodds, Ken G. Henry, Hannah M. Brauning, Rudiger McCulloch, Alan F. Hickey, Sharon M. Johnson, Patricia L. Elmes, Sara Wing, Janine Bryson, Brooke Knowler, Kevin Hyndman, Dianne Baird, Hayley McRae, Kathryn M. Jonker, Arjan Janssen, Peter H. McEwan, John C. Rowe, Suzanne J. |
author_facet | Hess, Melanie K. Zetouni, Larissa Hess, Andrew S. Budel, Juliana Dodds, Ken G. Henry, Hannah M. Brauning, Rudiger McCulloch, Alan F. Hickey, Sharon M. Johnson, Patricia L. Elmes, Sara Wing, Janine Bryson, Brooke Knowler, Kevin Hyndman, Dianne Baird, Hayley McRae, Kathryn M. Jonker, Arjan Janssen, Peter H. McEwan, John C. Rowe, Suzanne J. |
author_sort | Hess, Melanie K. |
collection | PubMed |
description | BACKGROUND: Rumen microbes break down complex dietary carbohydrates into energy sources for the host and are increasingly shown to be a key aspect of animal performance. Host genotypes can be combined with microbial DNA sequencing to predict performance traits or traits related to environmental impact, such as enteric methane emissions. Metagenome profiles were generated from 3139 rumen samples, collected from 1200 dual purpose ewes, using restriction enzyme-reduced representation sequencing (RE-RRS). Phenotypes were available for methane (CH4) and carbon dioxide (CO2) emissions, the ratio of CH4 to CH4 plus CO2 (CH4Ratio), feed efficiency (residual feed intake: RFI), liveweight at the time of methane collection (LW), liveweight at 8 months (LW8), fleece weight at 12 months (FW12) and parasite resistance measured by faecal egg count (FEC1). We estimated the proportion of phenotypic variance explained by host genetics and the rumen microbiome, as well as prediction accuracies for each of these traits. RESULTS: Incorporating metagenome profiles increased the variance explained and prediction accuracy compared to fitting only genomics for all traits except for CO2 emissions when animals were on a grass diet. Combining the metagenome profile with host genotype from lambs explained more than 70% of the variation in methane emissions and residual feed intake. Predictions were generally more accurate when incorporating metagenome profiles compared to genetics alone, even when considering profiles collected at different ages (lamb vs adult), or on different feeds (grass vs lucerne pellet). A reference-free approach to metagenome profiling performed better than metagenome profiles that were restricted to capturing genera from a reference database. We hypothesise that our reference-free approach is likely to outperform other reference-based approaches such as 16S rRNA gene sequencing for use in prediction of individual animal performance. CONCLUSIONS: This paper shows the potential of using RE-RRS as a low-cost, high-throughput approach for generating metagenome profiles on thousands of animals for improved prediction of economically and environmentally important traits. A reference-free approach using a microbial relationship matrix from log(10) proportions of each tag normalized within cohort (i.e., the group of animals sampled at the same time) is recommended for future predictions using RE-RRS metagenome profiles. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12711-023-00822-1. |
format | Online Article Text |
id | pubmed-10367317 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-103673172023-07-26 Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits Hess, Melanie K. Zetouni, Larissa Hess, Andrew S. Budel, Juliana Dodds, Ken G. Henry, Hannah M. Brauning, Rudiger McCulloch, Alan F. Hickey, Sharon M. Johnson, Patricia L. Elmes, Sara Wing, Janine Bryson, Brooke Knowler, Kevin Hyndman, Dianne Baird, Hayley McRae, Kathryn M. Jonker, Arjan Janssen, Peter H. McEwan, John C. Rowe, Suzanne J. Genet Sel Evol Research Article BACKGROUND: Rumen microbes break down complex dietary carbohydrates into energy sources for the host and are increasingly shown to be a key aspect of animal performance. Host genotypes can be combined with microbial DNA sequencing to predict performance traits or traits related to environmental impact, such as enteric methane emissions. Metagenome profiles were generated from 3139 rumen samples, collected from 1200 dual purpose ewes, using restriction enzyme-reduced representation sequencing (RE-RRS). Phenotypes were available for methane (CH4) and carbon dioxide (CO2) emissions, the ratio of CH4 to CH4 plus CO2 (CH4Ratio), feed efficiency (residual feed intake: RFI), liveweight at the time of methane collection (LW), liveweight at 8 months (LW8), fleece weight at 12 months (FW12) and parasite resistance measured by faecal egg count (FEC1). We estimated the proportion of phenotypic variance explained by host genetics and the rumen microbiome, as well as prediction accuracies for each of these traits. RESULTS: Incorporating metagenome profiles increased the variance explained and prediction accuracy compared to fitting only genomics for all traits except for CO2 emissions when animals were on a grass diet. Combining the metagenome profile with host genotype from lambs explained more than 70% of the variation in methane emissions and residual feed intake. Predictions were generally more accurate when incorporating metagenome profiles compared to genetics alone, even when considering profiles collected at different ages (lamb vs adult), or on different feeds (grass vs lucerne pellet). A reference-free approach to metagenome profiling performed better than metagenome profiles that were restricted to capturing genera from a reference database. We hypothesise that our reference-free approach is likely to outperform other reference-based approaches such as 16S rRNA gene sequencing for use in prediction of individual animal performance. CONCLUSIONS: This paper shows the potential of using RE-RRS as a low-cost, high-throughput approach for generating metagenome profiles on thousands of animals for improved prediction of economically and environmentally important traits. A reference-free approach using a microbial relationship matrix from log(10) proportions of each tag normalized within cohort (i.e., the group of animals sampled at the same time) is recommended for future predictions using RE-RRS metagenome profiles. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12711-023-00822-1. BioMed Central 2023-07-25 /pmc/articles/PMC10367317/ /pubmed/37491204 http://dx.doi.org/10.1186/s12711-023-00822-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Hess, Melanie K. Zetouni, Larissa Hess, Andrew S. Budel, Juliana Dodds, Ken G. Henry, Hannah M. Brauning, Rudiger McCulloch, Alan F. Hickey, Sharon M. Johnson, Patricia L. Elmes, Sara Wing, Janine Bryson, Brooke Knowler, Kevin Hyndman, Dianne Baird, Hayley McRae, Kathryn M. Jonker, Arjan Janssen, Peter H. McEwan, John C. Rowe, Suzanne J. Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits |
title | Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits |
title_full | Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits |
title_fullStr | Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits |
title_full_unstemmed | Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits |
title_short | Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits |
title_sort | combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367317/ https://www.ncbi.nlm.nih.gov/pubmed/37491204 http://dx.doi.org/10.1186/s12711-023-00822-1 |
work_keys_str_mv | AT hessmelaniek combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT zetounilarissa combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT hessandrews combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT budeljuliana combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT doddskeng combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT henryhannahm combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT brauningrudiger combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT mccullochalanf combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT hickeysharonm combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT johnsonpatricial combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT elmessara combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT wingjanine combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT brysonbrooke combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT knowlerkevin combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT hyndmandianne combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT bairdhayley combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT mcraekathrynm combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT jonkerarjan combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT janssenpeterh combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT mcewanjohnc combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits AT rowesuzannej combininghostandrumenmetagenomeprofilingforselectioninsheeppredictionofmethanefeedefficiencyproductionandhealthtraits |