Cargando…
Animal behaviour on the move: the use of auxiliary information and semi-supervision to improve behavioural inferences from Hidden Markov Models applied to GPS tracking datasets
BACKGROUND: State-space models, such as Hidden Markov Models (HMMs), are increasingly used to classify animal tracks into behavioural states. Typically, step length and turning angles of successive locations are used to infer where and when an animal is resting, foraging, or travelling. However, the...
Autores principales: | Saldanha, Sarah, Cox, Sam L., Militão, Teresa, González-Solís, Jacob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367325/ https://www.ncbi.nlm.nih.gov/pubmed/37488611 http://dx.doi.org/10.1186/s40462-023-00401-5 |
Ejemplares similares
-
Scalable Bayesian Inference for Coupled Hidden Markov and Semi-Markov Models
por: Touloupou, Panayiota, et al.
Publicado: (2019) -
Inference in Hidden Markov Models
por: Cappe, Olivier
Publicado: (2005) -
Flexible hidden Markov models for behaviour-dependent habitat selection
por: Klappstein, N. J., et al.
Publicado: (2023) -
The MOBIS dataset: a large GPS dataset of mobility behaviour in Switzerland
por: Molloy, Joseph, et al.
Publicado: (2022) -
Coupling spectral analysis and hidden Markov models for the segmentation of behavioural patterns
por: Heerah, Karine, et al.
Publicado: (2017)