Cargando…
Chinese medical entity recognition based on the dual-branch TENER model
BACKGROUND: Named Entity Recognition (NER) is a long-standing fundamental problem in various research fields of Natural Language Processing (NLP) and has been practiced in many application scenarios. However, the application results of NER methods in Chinese electronic medical records (EMRs) are not...
Autores principales: | Peng, Hui, Zhang, Zhichang, Liu, Dan, Qin, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367390/ https://www.ncbi.nlm.nih.gov/pubmed/37488521 http://dx.doi.org/10.1186/s12911-023-02243-y |
Ejemplares similares
-
Combining data augmentation and domain information with TENER model for Clinical Event Detection
por: Zhang, Zhichang, et al.
Publicado: (2021) -
Multi-Level Representation Learning for Chinese Medical Entity Recognition: Model Development and Validation
por: Zhang, Zhichang, et al.
Publicado: (2020) -
Tener y no tener
por: Hemingway, Ernest, 1899-1961
Publicado: (1989) -
No puedo tener hijos /
por: Juan, María Carmen, 1961-
Publicado: (2002) -
¿Tener o ser? /
por: Fromm, Erich, 1900-1980
Publicado: (1978)