Cargando…
Chemical screening identifies the anticancer properties of Polyporous tuberaster
Most conventional anticancer drugs cause resistance to chemotherapy, which has emerged as one of the major obstacles to cancer treatment. In order to address this issue, efforts have been made to select new anticancer compounds from natural sources. The aim of this study is to identify novel antican...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367929/ https://www.ncbi.nlm.nih.gov/pubmed/37497414 http://dx.doi.org/10.7150/jca.86304 |
Sumario: | Most conventional anticancer drugs cause resistance to chemotherapy, which has emerged as one of the major obstacles to cancer treatment. In order to address this issue, efforts have been made to select new anticancer compounds from natural sources. The aim of this study is to identify novel anticancer compounds from mycelial culture extracts belonging to Polyporus tuberaster (P. tuberaster). Here, we found that mycelial culture extracts of P. tuberaster cultured in PDB medium (pt-PDB) effectively inhibited cancer cell growth. pt-PDB reduced the growth of cancer cells through apoptosis induction and S-phase arrest. The anticancer efficacy of pt-PDB was not to limited to one type of cancer. Furthermore, unlike traditional anticancer medications, pt-PDB did not increase the proportion of side population (SP) cells, which plays a key role in the development of chemoresistance. Taken together, we discovered a novel anticancer drug candidate that has anticancer properties without increasing the proportion of SP cells. This new drug candidate can be used for the treatment of cancer, especially chemoresistant malignancies, and will provide a breakthrough in the treatment of chemoresistant cancer. |
---|