Cargando…
Developing tiny-sized particles, different modification behaviors of gold atoms, and nucleating distorted particles
The study of tiny-sized particles is beneficial in many ways. This has been the subject of many studies. The development of a tiny-sized particle depends on the attained dynamics of the atoms. In the development process of a tiny-sized particle, gold atoms must deal with different modification behav...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367953/ https://www.ncbi.nlm.nih.gov/pubmed/37496626 http://dx.doi.org/10.1039/d3na00346a |
Sumario: | The study of tiny-sized particles is beneficial in many ways. This has been the subject of many studies. The development of a tiny-sized particle depends on the attained dynamics of the atoms. In the development process of a tiny-sized particle, gold atoms must deal with different modification behaviors. Photons traveling along the air–solution interface also alter the characteristics of a developing tiny-sized particle. The electronic structures, modification behaviors, and attained dynamics of the atoms mainly contribute toward the development of tiny-sized particles. Energy under the supplied source and the local resulting forces collectively bind gold atoms. Both internally and externally driven dynamics influence the development process of different tiny-sized particles. Atoms in such developed tiny-sized particles do not experience the collective oscillations upon photons traveling along the air–solution interface. In the study of binding atoms, it is essential to consider the roles of both energy and force. Here, the development of tiny particles having different sizes presents a convincing discussion. Nucleating a distorted particle from the non-uniform amalgamation of tiny-sized particles is also discussed. |
---|