Cargando…

Autologous Concentrated Growth Factor Increases Skin Thickness and Area during Tissue Expansion: A Randomized Clinical Trial

Mechanical stretching of the skin (ie, tissue expansion) could generate additional skin, but it is limited by the intrinsic growth capacity. The authors conducted a study of autologous concentrated growth factor (CGF) to promote skin regeneration by increasing skin thickness and area during tissue e...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Poh-Ching, Zhang, Pei-Qi, Zhou, Shuang-Bai, He, Jizhou, Qian, Jia, Huang, Ru-Lin, Zhang, Zhi-Yue, Cheng, Chen, Li, Qingfeng, Xie, Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368219/
https://www.ncbi.nlm.nih.gov/pubmed/36728197
http://dx.doi.org/10.1097/PRS.0000000000010227
Descripción
Sumario:Mechanical stretching of the skin (ie, tissue expansion) could generate additional skin, but it is limited by the intrinsic growth capacity. The authors conducted a study of autologous concentrated growth factor (CGF) to promote skin regeneration by increasing skin thickness and area during tissue expansion. METHODS: A single-center randomized controlled trial was conducted from 2016 to 2019. Participants undergoing skin expansion received either CGF or saline by means of intradermal injection on the expanded skin (0.02 mL/cm(2)), for a total of three treatments at 4-week intervals. The primary endpoint was the expanded skin thickness at 12 weeks, which was measured by ultrasound. The secondary endpoints included skin thickness at 4 and 8 weeks and surface area, expansion index, and skin texture score of the expanded skin at 12 weeks. Safety assessments, for infection symptoms and nodule formation, were assessed at 24 weeks. RESULTS: In total, 26 patients were enrolled and assigned to the CGF or control group. Compared with the control group, the CGF group had significantly increased skin thickness at 8 (control, 1.1 ± 0.1 mm; CGF, 1.4 ± 0.1 mm; −0.6 to 0.0 mm; P = 0.047) and 12 weeks (control, 1.0 ± 0.1 mm; CGF, 1.3 ± 0.1 mm; −0.6 to 0.0 mm; P = 0.047). Compared with the baseline thickness (control, 1.6 ± 0.1 mm; CGF, 1.5 ± 0.1 mm; −0.3 to 0.5 mm; P = 0.987), skin thickness was sustained in the CGF group at 8 weeks after treatment (−0.1 to 0.3 mm; P = 0.711) but decreased in the control group (0.3 to 0.7 mm; P < 0.001). At 12 weeks, the CGF group showed greater increases in surface area (control, 77.7 ± 18.5 cm(2); CGF, 135.0 ± 15.7 cm(2); 7.2 cm(2) to 107.4 cm(2); P = 0.027) and expansion index (control, 0.9 ± 0.1; CGF, 1.4 ± 0.2; 0.0 to 0.8; P = 0.030) than the control group. In addition, CGF-treated skin showed an improvement in texture [CGF: grade 3, n = 2 (15.8%), grade 2, n = 4 (30.7%); control: grade 3, n = 0 (0.0%), grade 2, n = 3 (23.0%)]. No severe adverse events occurred. CONCLUSION: CGF treatment increases skin thickness and area during tissue expansion, and represents a safe and effective strategy for managing skin expansion. CLINICAL RELEVANCE STATEMENT: The findings of this study indicate that it is practically feasible to improve skin regeneration by applying autologous platelet concentrate therapy for skin expansion management. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, II.