Cargando…

Development, circuitry, and function of the zebrafish cerebellum

The cerebellum represents a brain compartment that first appeared in gnathostomes (jawed vertebrates). Besides the addition of cell numbers, its development, cytoarchitecture, circuitry, physiology, and function have been highly conserved throughout avian and mammalian species. While cerebellar rese...

Descripción completa

Detalles Bibliográficos
Autores principales: Pose-Méndez, Sol, Schramm, Paul, Valishetti, Komali, Köster, Reinhard W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368569/
https://www.ncbi.nlm.nih.gov/pubmed/37490159
http://dx.doi.org/10.1007/s00018-023-04879-5
Descripción
Sumario:The cerebellum represents a brain compartment that first appeared in gnathostomes (jawed vertebrates). Besides the addition of cell numbers, its development, cytoarchitecture, circuitry, physiology, and function have been highly conserved throughout avian and mammalian species. While cerebellar research in avian and mammals is extensive, systematic investigations on this brain compartment in zebrafish as a teleostian model organism started only about two decades ago, but has provided considerable insight into cerebellar development, physiology, and function since then. Zebrafish are genetically tractable with nearly transparent small-sized embryos, in which cerebellar development occurs within a few days. Therefore, genetic investigations accompanied with non-invasive high-resolution in vivo time-lapse imaging represents a powerful combination for interrogating the behavior and function of cerebellar cells in their complex native environment.