Cargando…

Ergonomic guidelines for the design interfaces of additive modules for manual wheelchairs: sagittal plane

When designing wheelchair propulsion systems operated with the upper limb, there is a noticeable lack of ergonomic analyses informing about the areas on the wheelchair frame where hand-operated controls can be installed. With that in mind, a research goal was set to measure the areas of human hand r...

Descripción completa

Detalles Bibliográficos
Autores principales: Wieczorek, Bartosz, Kukla, Mateusz, Warguła, Łukasz, Giedrowicz, Marcin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368659/
https://www.ncbi.nlm.nih.gov/pubmed/37491559
http://dx.doi.org/10.1038/s41598-023-39085-7
Descripción
Sumario:When designing wheelchair propulsion systems operated with the upper limb, there is a noticeable lack of ergonomic analyses informing about the areas on the wheelchair frame where hand-operated controls can be installed. With that in mind, a research goal was set to measure the areas of human hand reach within the area defined by the structural elements of a manual wheelchair. An ergonomic analysis was performed on a group of ten patients representing 50% of anthropometric dimensions. Motion capture and image analysis software based on the openCV library were used for the measurement. The conducted research resulted in the development of a map of the hands range in the lateral plane of the wheelchair, parallel to the sagittal plane. In addition, the map was divided into three zones of hand reach, taking into account various levels of comfort of hand manipulation. The total hand reach area was 1269 mm long and 731 mm high, while the most comfortable manipulation area was 352 mm long and 649 mm high. The plotted hands reach areas act as a map informing the designer where on the sagittal plane additional accessories operated by the user can be installed.