Cargando…

Evidences for the augmented Cd(II) biosorption by Cd(II) resistant strain Candida tropicalis XTA1874 from contaminated aqueous medium

Cadmium is one of the most dreadful heavy metals and is becoming a major toxicant in ground water with increasing concentration above the WHO Guidelines in drinking water (0.003 mg/L). The potential sources of cadmium include sewage sludge, phosphate fertilizers and ingredients like Ni–Cd batteries,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhattacharyya, Kaustav, Bhattacharjee, Neelanjan, Ganguly, Subhadeep
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368703/
https://www.ncbi.nlm.nih.gov/pubmed/37491499
http://dx.doi.org/10.1038/s41598-023-38485-z
Descripción
Sumario:Cadmium is one of the most dreadful heavy metals and is becoming a major toxicant in ground water with increasing concentration above the WHO Guidelines in drinking water (0.003 mg/L). The potential sources of cadmium include sewage sludge, phosphate fertilizers and ingredients like Ni–Cd batteries, pigments, plating and plastics. Cadmium levels are increased in water owing to the use and disposal of cadmium containing ingredients. Water draining from a landfill may contain higher cadmium levels. The authors have tried to evaluate the optimized nutritional conditions for the optimal growth and Cd(II) remediation capacity for a developed Cd(II) resistant yeast strain named Candida tropicalis XTA 1874 isolated from contaminated water-body in West Bengal. By analyzing the optimization conditions, a synthetic medium was developed and the composition has been given in the main text. The strain showed much better Cd(II) adsorption capacity under the optimized nutritional conditions (Mean removal = 88.077 ± 0.097%).