Cargando…

A comprehensive multi-domain dataset for mitotic figure detection

The prognostic value of mitotic figures in tumor tissue is well-established for many tumor types and automating this task is of high research interest. However, especially deep learning-based methods face performance deterioration in the presence of domain shifts, which may arise from different tumo...

Descripción completa

Detalles Bibliográficos
Autores principales: Aubreville, Marc, Wilm, Frauke, Stathonikos, Nikolas, Breininger, Katharina, Donovan, Taryn A., Jabari, Samir, Veta, Mitko, Ganz, Jonathan, Ammeling, Jonas, van Diest, Paul J., Klopfleisch, Robert, Bertram, Christof A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368709/
https://www.ncbi.nlm.nih.gov/pubmed/37491536
http://dx.doi.org/10.1038/s41597-023-02327-4
_version_ 1785077562930626560
author Aubreville, Marc
Wilm, Frauke
Stathonikos, Nikolas
Breininger, Katharina
Donovan, Taryn A.
Jabari, Samir
Veta, Mitko
Ganz, Jonathan
Ammeling, Jonas
van Diest, Paul J.
Klopfleisch, Robert
Bertram, Christof A.
author_facet Aubreville, Marc
Wilm, Frauke
Stathonikos, Nikolas
Breininger, Katharina
Donovan, Taryn A.
Jabari, Samir
Veta, Mitko
Ganz, Jonathan
Ammeling, Jonas
van Diest, Paul J.
Klopfleisch, Robert
Bertram, Christof A.
author_sort Aubreville, Marc
collection PubMed
description The prognostic value of mitotic figures in tumor tissue is well-established for many tumor types and automating this task is of high research interest. However, especially deep learning-based methods face performance deterioration in the presence of domain shifts, which may arise from different tumor types, slide preparation and digitization devices. We introduce the MIDOG++ dataset, an extension of the MIDOG 2021 and 2022 challenge datasets. We provide region of interest images from 503 histological specimens of seven different tumor types with variable morphology with in total labels for 11,937 mitotic figures: breast carcinoma, lung carcinoma, lymphosarcoma, neuroendocrine tumor, cutaneous mast cell tumor, cutaneous melanoma, and (sub)cutaneous soft tissue sarcoma. The specimens were processed in several laboratories utilizing diverse scanners. We evaluated the extent of the domain shift by using state-of-the-art approaches, observing notable differences in single-domain training. In a leave-one-domain-out setting, generalizability improved considerably. This mitotic figure dataset is the first that incorporates a wide domain shift based on different tumor types, laboratories, whole slide image scanners, and species.
format Online
Article
Text
id pubmed-10368709
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-103687092023-07-27 A comprehensive multi-domain dataset for mitotic figure detection Aubreville, Marc Wilm, Frauke Stathonikos, Nikolas Breininger, Katharina Donovan, Taryn A. Jabari, Samir Veta, Mitko Ganz, Jonathan Ammeling, Jonas van Diest, Paul J. Klopfleisch, Robert Bertram, Christof A. Sci Data Data Descriptor The prognostic value of mitotic figures in tumor tissue is well-established for many tumor types and automating this task is of high research interest. However, especially deep learning-based methods face performance deterioration in the presence of domain shifts, which may arise from different tumor types, slide preparation and digitization devices. We introduce the MIDOG++ dataset, an extension of the MIDOG 2021 and 2022 challenge datasets. We provide region of interest images from 503 histological specimens of seven different tumor types with variable morphology with in total labels for 11,937 mitotic figures: breast carcinoma, lung carcinoma, lymphosarcoma, neuroendocrine tumor, cutaneous mast cell tumor, cutaneous melanoma, and (sub)cutaneous soft tissue sarcoma. The specimens were processed in several laboratories utilizing diverse scanners. We evaluated the extent of the domain shift by using state-of-the-art approaches, observing notable differences in single-domain training. In a leave-one-domain-out setting, generalizability improved considerably. This mitotic figure dataset is the first that incorporates a wide domain shift based on different tumor types, laboratories, whole slide image scanners, and species. Nature Publishing Group UK 2023-07-25 /pmc/articles/PMC10368709/ /pubmed/37491536 http://dx.doi.org/10.1038/s41597-023-02327-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Aubreville, Marc
Wilm, Frauke
Stathonikos, Nikolas
Breininger, Katharina
Donovan, Taryn A.
Jabari, Samir
Veta, Mitko
Ganz, Jonathan
Ammeling, Jonas
van Diest, Paul J.
Klopfleisch, Robert
Bertram, Christof A.
A comprehensive multi-domain dataset for mitotic figure detection
title A comprehensive multi-domain dataset for mitotic figure detection
title_full A comprehensive multi-domain dataset for mitotic figure detection
title_fullStr A comprehensive multi-domain dataset for mitotic figure detection
title_full_unstemmed A comprehensive multi-domain dataset for mitotic figure detection
title_short A comprehensive multi-domain dataset for mitotic figure detection
title_sort comprehensive multi-domain dataset for mitotic figure detection
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368709/
https://www.ncbi.nlm.nih.gov/pubmed/37491536
http://dx.doi.org/10.1038/s41597-023-02327-4
work_keys_str_mv AT aubrevillemarc acomprehensivemultidomaindatasetformitoticfiguredetection
AT wilmfrauke acomprehensivemultidomaindatasetformitoticfiguredetection
AT stathonikosnikolas acomprehensivemultidomaindatasetformitoticfiguredetection
AT breiningerkatharina acomprehensivemultidomaindatasetformitoticfiguredetection
AT donovantaryna acomprehensivemultidomaindatasetformitoticfiguredetection
AT jabarisamir acomprehensivemultidomaindatasetformitoticfiguredetection
AT vetamitko acomprehensivemultidomaindatasetformitoticfiguredetection
AT ganzjonathan acomprehensivemultidomaindatasetformitoticfiguredetection
AT ammelingjonas acomprehensivemultidomaindatasetformitoticfiguredetection
AT vandiestpaulj acomprehensivemultidomaindatasetformitoticfiguredetection
AT klopfleischrobert acomprehensivemultidomaindatasetformitoticfiguredetection
AT bertramchristofa acomprehensivemultidomaindatasetformitoticfiguredetection
AT aubrevillemarc comprehensivemultidomaindatasetformitoticfiguredetection
AT wilmfrauke comprehensivemultidomaindatasetformitoticfiguredetection
AT stathonikosnikolas comprehensivemultidomaindatasetformitoticfiguredetection
AT breiningerkatharina comprehensivemultidomaindatasetformitoticfiguredetection
AT donovantaryna comprehensivemultidomaindatasetformitoticfiguredetection
AT jabarisamir comprehensivemultidomaindatasetformitoticfiguredetection
AT vetamitko comprehensivemultidomaindatasetformitoticfiguredetection
AT ganzjonathan comprehensivemultidomaindatasetformitoticfiguredetection
AT ammelingjonas comprehensivemultidomaindatasetformitoticfiguredetection
AT vandiestpaulj comprehensivemultidomaindatasetformitoticfiguredetection
AT klopfleischrobert comprehensivemultidomaindatasetformitoticfiguredetection
AT bertramchristofa comprehensivemultidomaindatasetformitoticfiguredetection