Cargando…
A comprehensive multi-domain dataset for mitotic figure detection
The prognostic value of mitotic figures in tumor tissue is well-established for many tumor types and automating this task is of high research interest. However, especially deep learning-based methods face performance deterioration in the presence of domain shifts, which may arise from different tumo...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368709/ https://www.ncbi.nlm.nih.gov/pubmed/37491536 http://dx.doi.org/10.1038/s41597-023-02327-4 |
_version_ | 1785077562930626560 |
---|---|
author | Aubreville, Marc Wilm, Frauke Stathonikos, Nikolas Breininger, Katharina Donovan, Taryn A. Jabari, Samir Veta, Mitko Ganz, Jonathan Ammeling, Jonas van Diest, Paul J. Klopfleisch, Robert Bertram, Christof A. |
author_facet | Aubreville, Marc Wilm, Frauke Stathonikos, Nikolas Breininger, Katharina Donovan, Taryn A. Jabari, Samir Veta, Mitko Ganz, Jonathan Ammeling, Jonas van Diest, Paul J. Klopfleisch, Robert Bertram, Christof A. |
author_sort | Aubreville, Marc |
collection | PubMed |
description | The prognostic value of mitotic figures in tumor tissue is well-established for many tumor types and automating this task is of high research interest. However, especially deep learning-based methods face performance deterioration in the presence of domain shifts, which may arise from different tumor types, slide preparation and digitization devices. We introduce the MIDOG++ dataset, an extension of the MIDOG 2021 and 2022 challenge datasets. We provide region of interest images from 503 histological specimens of seven different tumor types with variable morphology with in total labels for 11,937 mitotic figures: breast carcinoma, lung carcinoma, lymphosarcoma, neuroendocrine tumor, cutaneous mast cell tumor, cutaneous melanoma, and (sub)cutaneous soft tissue sarcoma. The specimens were processed in several laboratories utilizing diverse scanners. We evaluated the extent of the domain shift by using state-of-the-art approaches, observing notable differences in single-domain training. In a leave-one-domain-out setting, generalizability improved considerably. This mitotic figure dataset is the first that incorporates a wide domain shift based on different tumor types, laboratories, whole slide image scanners, and species. |
format | Online Article Text |
id | pubmed-10368709 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-103687092023-07-27 A comprehensive multi-domain dataset for mitotic figure detection Aubreville, Marc Wilm, Frauke Stathonikos, Nikolas Breininger, Katharina Donovan, Taryn A. Jabari, Samir Veta, Mitko Ganz, Jonathan Ammeling, Jonas van Diest, Paul J. Klopfleisch, Robert Bertram, Christof A. Sci Data Data Descriptor The prognostic value of mitotic figures in tumor tissue is well-established for many tumor types and automating this task is of high research interest. However, especially deep learning-based methods face performance deterioration in the presence of domain shifts, which may arise from different tumor types, slide preparation and digitization devices. We introduce the MIDOG++ dataset, an extension of the MIDOG 2021 and 2022 challenge datasets. We provide region of interest images from 503 histological specimens of seven different tumor types with variable morphology with in total labels for 11,937 mitotic figures: breast carcinoma, lung carcinoma, lymphosarcoma, neuroendocrine tumor, cutaneous mast cell tumor, cutaneous melanoma, and (sub)cutaneous soft tissue sarcoma. The specimens were processed in several laboratories utilizing diverse scanners. We evaluated the extent of the domain shift by using state-of-the-art approaches, observing notable differences in single-domain training. In a leave-one-domain-out setting, generalizability improved considerably. This mitotic figure dataset is the first that incorporates a wide domain shift based on different tumor types, laboratories, whole slide image scanners, and species. Nature Publishing Group UK 2023-07-25 /pmc/articles/PMC10368709/ /pubmed/37491536 http://dx.doi.org/10.1038/s41597-023-02327-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Data Descriptor Aubreville, Marc Wilm, Frauke Stathonikos, Nikolas Breininger, Katharina Donovan, Taryn A. Jabari, Samir Veta, Mitko Ganz, Jonathan Ammeling, Jonas van Diest, Paul J. Klopfleisch, Robert Bertram, Christof A. A comprehensive multi-domain dataset for mitotic figure detection |
title | A comprehensive multi-domain dataset for mitotic figure detection |
title_full | A comprehensive multi-domain dataset for mitotic figure detection |
title_fullStr | A comprehensive multi-domain dataset for mitotic figure detection |
title_full_unstemmed | A comprehensive multi-domain dataset for mitotic figure detection |
title_short | A comprehensive multi-domain dataset for mitotic figure detection |
title_sort | comprehensive multi-domain dataset for mitotic figure detection |
topic | Data Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368709/ https://www.ncbi.nlm.nih.gov/pubmed/37491536 http://dx.doi.org/10.1038/s41597-023-02327-4 |
work_keys_str_mv | AT aubrevillemarc acomprehensivemultidomaindatasetformitoticfiguredetection AT wilmfrauke acomprehensivemultidomaindatasetformitoticfiguredetection AT stathonikosnikolas acomprehensivemultidomaindatasetformitoticfiguredetection AT breiningerkatharina acomprehensivemultidomaindatasetformitoticfiguredetection AT donovantaryna acomprehensivemultidomaindatasetformitoticfiguredetection AT jabarisamir acomprehensivemultidomaindatasetformitoticfiguredetection AT vetamitko acomprehensivemultidomaindatasetformitoticfiguredetection AT ganzjonathan acomprehensivemultidomaindatasetformitoticfiguredetection AT ammelingjonas acomprehensivemultidomaindatasetformitoticfiguredetection AT vandiestpaulj acomprehensivemultidomaindatasetformitoticfiguredetection AT klopfleischrobert acomprehensivemultidomaindatasetformitoticfiguredetection AT bertramchristofa acomprehensivemultidomaindatasetformitoticfiguredetection AT aubrevillemarc comprehensivemultidomaindatasetformitoticfiguredetection AT wilmfrauke comprehensivemultidomaindatasetformitoticfiguredetection AT stathonikosnikolas comprehensivemultidomaindatasetformitoticfiguredetection AT breiningerkatharina comprehensivemultidomaindatasetformitoticfiguredetection AT donovantaryna comprehensivemultidomaindatasetformitoticfiguredetection AT jabarisamir comprehensivemultidomaindatasetformitoticfiguredetection AT vetamitko comprehensivemultidomaindatasetformitoticfiguredetection AT ganzjonathan comprehensivemultidomaindatasetformitoticfiguredetection AT ammelingjonas comprehensivemultidomaindatasetformitoticfiguredetection AT vandiestpaulj comprehensivemultidomaindatasetformitoticfiguredetection AT klopfleischrobert comprehensivemultidomaindatasetformitoticfiguredetection AT bertramchristofa comprehensivemultidomaindatasetformitoticfiguredetection |