Cargando…
VBASS enables integration of single cell gene expression data in Bayesian association analysis of rare variants
Rare or de novo variants have substantial contribution to human diseases, but the statistical power to identify risk genes by rare variants is generally low due to rarity of genotype data. Previous studies have shown that risk genes usually have high expression in relevant cell types, although for m...
Autores principales: | Zhong, Guojie, Choi, Yoolim A., Shen, Yufeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368729/ https://www.ncbi.nlm.nih.gov/pubmed/37491581 http://dx.doi.org/10.1038/s42003-023-05155-9 |
Ejemplares similares
-
Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology
por: Chu, Tinyi, et al.
Publicado: (2022) -
Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders
por: Nguyen, Hoang T., et al.
Publicado: (2017) -
Identifying rare and common variants with Bayesian variable selection
por: Oh, Cheongeun
Publicado: (2016) -
Bayesian biclustering of gene expression data
por: Gu, Jiajun, et al.
Publicado: (2008) -
Identifying rare variants using a Bayesian regression approach
por: Yan, Aimin, et al.
Publicado: (2011)