Cargando…
Generalizability of machine learning methods in detecting adverse drug events from clinical narratives in electronic medical records
We assessed the generalizability of machine learning methods using natural language processing (NLP) techniques to detect adverse drug events (ADEs) from clinical narratives in electronic medical records (EMRs). We constructed a new corpus correlating drugs with adverse drug events using 1,394 clini...
Autores principales: | Zitu, Md Muntasir, Zhang, Shijun, Owen, Dwight H., Chiang, Chienwei, Li, Lang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368879/ https://www.ncbi.nlm.nih.gov/pubmed/37502211 http://dx.doi.org/10.3389/fphar.2023.1218679 |
Ejemplares similares
-
Accuracy and generalizability of using automated methods for identifying adverse events from electronic health record data: a validation study protocol
por: Rochefort, Christian M., et al.
Publicado: (2017) -
PhenoDEF: a corpus for annotating sentences with information of phenotype definitions in biomedical literature
por: Binkheder, Samar, et al.
Publicado: (2022) -
Correction: PhenoDEF: a corpus for annotating sentences with information of phenotype definitions in biomedical literature
por: Binkheder, Samar, et al.
Publicado: (2022) -
Approach to machine learning for extraction of real-world data variables from electronic health records
por: Adamson, Blythe, et al.
Publicado: (2023) -
Predicting Adverse Drug Events in Chinese Pediatric Inpatients With the Associated Risk Factors: A Machine Learning Study
por: Yu, Ze, et al.
Publicado: (2021)