Cargando…
Interactively learning behavior trees from imperfect human demonstrations
Introduction: In Interactive Task Learning (ITL), an agent learns a new task through natural interaction with a human instructor. Behavior Trees (BTs) offer a reactive, modular, and interpretable way of encoding task descriptions but have not yet been applied a lot in robotic ITL settings. Most exis...
Autores principales: | Scherf, Lisa, Schmidt, Aljoscha, Pal, Suman, Koert, Dorothea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368948/ https://www.ncbi.nlm.nih.gov/pubmed/37501742 http://dx.doi.org/10.3389/frobt.2023.1152595 |
Ejemplares similares
-
Multi-Channel Interactive Reinforcement Learning for Sequential Tasks
por: Koert, Dorothea, et al.
Publicado: (2020) -
Interactive and incremental learning of spatial object relations from human demonstrations
por: Kartmann, Rainer, et al.
Publicado: (2023) -
Hand-Object Interaction: From Human Demonstrations to Robot Manipulation
por: Carfì, Alessandro, et al.
Publicado: (2021) -
Learning Trajectory Distributions for Assisted Teleoperation and Path Planning
por: Ewerton, Marco, et al.
Publicado: (2019) -
ExGenNet: Learning to Generate Robotic Facial Expression Using Facial Expression Recognition
por: Rawal, Niyati, et al.
Publicado: (2022)