Cargando…
Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies
The selective pressures leading to the elaboration of downstream, integrative processing centres, such as the mammalian neocortex or insect mushroom bodies, are often unclear. In Heliconius butterflies, the mushroom bodies are two to four times larger than those of their Heliconiini relatives, and t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369028/ https://www.ncbi.nlm.nih.gov/pubmed/37491961 http://dx.doi.org/10.1098/rspb.2023.1155 |
_version_ | 1785077668938514432 |
---|---|
author | Young, Fletcher J. Monllor, Monica McMillan, W. Owen Montgomery, Stephen H. |
author_facet | Young, Fletcher J. Monllor, Monica McMillan, W. Owen Montgomery, Stephen H. |
author_sort | Young, Fletcher J. |
collection | PubMed |
description | The selective pressures leading to the elaboration of downstream, integrative processing centres, such as the mammalian neocortex or insect mushroom bodies, are often unclear. In Heliconius butterflies, the mushroom bodies are two to four times larger than those of their Heliconiini relatives, and the largest known in Lepidoptera. Heliconiini lay almost exclusively on Passiflora, which exhibit a remarkable diversity of leaf shape, and it has been suggested that the mushroom body expansion of Heliconius may have been driven by the cognitive demands of recognizing and learning leaf shapes of local host plants. We test this hypothesis using two complementary methods: (i) phylogenetic comparative analyses to test whether variation in mushroom body size is associated with the morphological diversity of host plants exploited across the Heliconiini; and (ii) shape-learning experiments using six Heliconiini species. We found that variation in the range of leaf morphologies used by Heliconiini was not associated with mushroom body volume. Similarly, we find interspecific differences in shape-learning ability, but Heliconius are not overall better shape learners than other Heliconiini. Together these results suggest that the visual recognition and learning of host plants was not a main factor driving the diversity of mushroom body size in this tribe. |
format | Online Article Text |
id | pubmed-10369028 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-103690282023-07-27 Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies Young, Fletcher J. Monllor, Monica McMillan, W. Owen Montgomery, Stephen H. Proc Biol Sci Neuroscience and Cognition The selective pressures leading to the elaboration of downstream, integrative processing centres, such as the mammalian neocortex or insect mushroom bodies, are often unclear. In Heliconius butterflies, the mushroom bodies are two to four times larger than those of their Heliconiini relatives, and the largest known in Lepidoptera. Heliconiini lay almost exclusively on Passiflora, which exhibit a remarkable diversity of leaf shape, and it has been suggested that the mushroom body expansion of Heliconius may have been driven by the cognitive demands of recognizing and learning leaf shapes of local host plants. We test this hypothesis using two complementary methods: (i) phylogenetic comparative analyses to test whether variation in mushroom body size is associated with the morphological diversity of host plants exploited across the Heliconiini; and (ii) shape-learning experiments using six Heliconiini species. We found that variation in the range of leaf morphologies used by Heliconiini was not associated with mushroom body volume. Similarly, we find interspecific differences in shape-learning ability, but Heliconius are not overall better shape learners than other Heliconiini. Together these results suggest that the visual recognition and learning of host plants was not a main factor driving the diversity of mushroom body size in this tribe. The Royal Society 2023-07-26 2023-07-26 /pmc/articles/PMC10369028/ /pubmed/37491961 http://dx.doi.org/10.1098/rspb.2023.1155 Text en © 2023 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Neuroscience and Cognition Young, Fletcher J. Monllor, Monica McMillan, W. Owen Montgomery, Stephen H. Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies |
title | Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies |
title_full | Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies |
title_fullStr | Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies |
title_full_unstemmed | Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies |
title_short | Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies |
title_sort | patterns of host plant use do not explain mushroom body expansion in heliconiini butterflies |
topic | Neuroscience and Cognition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369028/ https://www.ncbi.nlm.nih.gov/pubmed/37491961 http://dx.doi.org/10.1098/rspb.2023.1155 |
work_keys_str_mv | AT youngfletcherj patternsofhostplantusedonotexplainmushroombodyexpansioninheliconiinibutterflies AT monllormonica patternsofhostplantusedonotexplainmushroombodyexpansioninheliconiinibutterflies AT mcmillanwowen patternsofhostplantusedonotexplainmushroombodyexpansioninheliconiinibutterflies AT montgomerystephenh patternsofhostplantusedonotexplainmushroombodyexpansioninheliconiinibutterflies |