Cargando…

Large‐Area Field Potential Imaging Having Single Neuron Resolution Using 236 880 Electrodes CMOS‐MEA Technology

The electrophysiological technology having a high spatiotemporal resolution at the single‐cell level and noninvasive measurements of large areas provide insights on underlying neuronal function. Here, a complementary metal‐oxide semiconductor (CMOS)‐microelectrode array (MEA) is used that uses 236 8...

Descripción completa

Detalles Bibliográficos
Autores principales: Suzuki, Ikuro, Matsuda, Naoki, Han, Xiaobo, Noji, Shuhei, Shibata, Mikako, Nagafuku, Nami, Ishibashi, Yuto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369302/
https://www.ncbi.nlm.nih.gov/pubmed/37088859
http://dx.doi.org/10.1002/advs.202207732
Descripción
Sumario:The electrophysiological technology having a high spatiotemporal resolution at the single‐cell level and noninvasive measurements of large areas provide insights on underlying neuronal function. Here, a complementary metal‐oxide semiconductor (CMOS)‐microelectrode array (MEA) is used that uses 236 880 electrodes each with an electrode size of 11.22 × 11.22 µm and 236 880 covering a wide area of 5.5 × 5.9 mm in presenting a detailed and single‐cell‐level neural activity analysis platform for brain slices, human iPS cell‐derived cortical networks, peripheral neurons, and human brain organoids. Propagation pattern characteristics between brain regions changes the synaptic propagation into compounds based on single‐cell time‐series patterns, classification based on single DRG neuron firing patterns and compound responses, axonal conduction characteristics and changes to anticancer drugs, and network activities and transition to compounds in brain organoids are extracted. This detailed analysis of neural activity at the single‐cell level using the CMOS‐MEA provides a new understanding of the basic mechanisms of brain circuits in vitro and ex vivo, on human neurological diseases for drug discovery, and compound toxicity assessment.