Cargando…

A robust harmonization approach for cognitive data from multiple aging and dementia cohorts

INTRODUCTION: Although many cognitive measures have been developed to assess cognitive decline due to Alzheimer's disease (AD), there is little consensus on optimal measures, leading to varied assessments across research cohorts and clinical trials making it difficult to pool cognitive measures...

Descripción completa

Detalles Bibliográficos
Autores principales: Giorgio, Joseph, Tanna, Ankeet, Malpetti, Maura, White, Simon R., Wang, Jingshen, Baker, Suzanne, Landau, Susan, Tanaka, Tomotaka, Chen, Christopher, Rowe, James B., O'Brien, John, Fripp, Jurgen, Breakspear, Michael, Jagust, William, Kourtzi, Zoe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369372/
https://www.ncbi.nlm.nih.gov/pubmed/37502020
http://dx.doi.org/10.1002/dad2.12453
_version_ 1785077745930207232
author Giorgio, Joseph
Tanna, Ankeet
Malpetti, Maura
White, Simon R.
Wang, Jingshen
Baker, Suzanne
Landau, Susan
Tanaka, Tomotaka
Chen, Christopher
Rowe, James B.
O'Brien, John
Fripp, Jurgen
Breakspear, Michael
Jagust, William
Kourtzi, Zoe
author_facet Giorgio, Joseph
Tanna, Ankeet
Malpetti, Maura
White, Simon R.
Wang, Jingshen
Baker, Suzanne
Landau, Susan
Tanaka, Tomotaka
Chen, Christopher
Rowe, James B.
O'Brien, John
Fripp, Jurgen
Breakspear, Michael
Jagust, William
Kourtzi, Zoe
author_sort Giorgio, Joseph
collection PubMed
description INTRODUCTION: Although many cognitive measures have been developed to assess cognitive decline due to Alzheimer's disease (AD), there is little consensus on optimal measures, leading to varied assessments across research cohorts and clinical trials making it difficult to pool cognitive measures across studies. METHODS: We used a two‐stage approach to harmonize cognitive data across cohorts and derive a cross‐cohort score of cognitive impairment due to AD. First, we pool and harmonize cognitive data from international cohorts of varying size and ethnic diversity. Next, we derived cognitive composites that leverage maximal data from the harmonized dataset. RESULTS: We show that our cognitive composites are robust across cohorts and achieve greater or comparable sensitivity to AD‐related cognitive decline compared to the Mini‐Mental State Examination and Preclinical Alzheimer Cognitive Composite. Finally, we used an independent cohort validating both our harmonization approach and composite measures. DISCUSSION: Our easy to implement and readily available pipeline offers an approach for researchers to harmonize their cognitive data with large publicly available cohorts, providing a simple way to pool data for the development or validation of findings related to cognitive decline due to AD.
format Online
Article
Text
id pubmed-10369372
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-103693722023-07-27 A robust harmonization approach for cognitive data from multiple aging and dementia cohorts Giorgio, Joseph Tanna, Ankeet Malpetti, Maura White, Simon R. Wang, Jingshen Baker, Suzanne Landau, Susan Tanaka, Tomotaka Chen, Christopher Rowe, James B. O'Brien, John Fripp, Jurgen Breakspear, Michael Jagust, William Kourtzi, Zoe Alzheimers Dement (Amst) Research Articles INTRODUCTION: Although many cognitive measures have been developed to assess cognitive decline due to Alzheimer's disease (AD), there is little consensus on optimal measures, leading to varied assessments across research cohorts and clinical trials making it difficult to pool cognitive measures across studies. METHODS: We used a two‐stage approach to harmonize cognitive data across cohorts and derive a cross‐cohort score of cognitive impairment due to AD. First, we pool and harmonize cognitive data from international cohorts of varying size and ethnic diversity. Next, we derived cognitive composites that leverage maximal data from the harmonized dataset. RESULTS: We show that our cognitive composites are robust across cohorts and achieve greater or comparable sensitivity to AD‐related cognitive decline compared to the Mini‐Mental State Examination and Preclinical Alzheimer Cognitive Composite. Finally, we used an independent cohort validating both our harmonization approach and composite measures. DISCUSSION: Our easy to implement and readily available pipeline offers an approach for researchers to harmonize their cognitive data with large publicly available cohorts, providing a simple way to pool data for the development or validation of findings related to cognitive decline due to AD. John Wiley and Sons Inc. 2023-07-26 /pmc/articles/PMC10369372/ /pubmed/37502020 http://dx.doi.org/10.1002/dad2.12453 Text en © 2023 The Authors. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring published by Wiley Periodicals, LLC on behalf of Alzheimer's Association. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
Giorgio, Joseph
Tanna, Ankeet
Malpetti, Maura
White, Simon R.
Wang, Jingshen
Baker, Suzanne
Landau, Susan
Tanaka, Tomotaka
Chen, Christopher
Rowe, James B.
O'Brien, John
Fripp, Jurgen
Breakspear, Michael
Jagust, William
Kourtzi, Zoe
A robust harmonization approach for cognitive data from multiple aging and dementia cohorts
title A robust harmonization approach for cognitive data from multiple aging and dementia cohorts
title_full A robust harmonization approach for cognitive data from multiple aging and dementia cohorts
title_fullStr A robust harmonization approach for cognitive data from multiple aging and dementia cohorts
title_full_unstemmed A robust harmonization approach for cognitive data from multiple aging and dementia cohorts
title_short A robust harmonization approach for cognitive data from multiple aging and dementia cohorts
title_sort robust harmonization approach for cognitive data from multiple aging and dementia cohorts
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369372/
https://www.ncbi.nlm.nih.gov/pubmed/37502020
http://dx.doi.org/10.1002/dad2.12453
work_keys_str_mv AT giorgiojoseph arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT tannaankeet arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT malpettimaura arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT whitesimonr arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT wangjingshen arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT bakersuzanne arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT landaususan arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT tanakatomotaka arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT chenchristopher arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT rowejamesb arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT obrienjohn arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT frippjurgen arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT breakspearmichael arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT jagustwilliam arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT kourtzizoe arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT arobustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT giorgiojoseph robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT tannaankeet robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT malpettimaura robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT whitesimonr robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT wangjingshen robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT bakersuzanne robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT landaususan robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT tanakatomotaka robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT chenchristopher robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT rowejamesb robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT obrienjohn robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT frippjurgen robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT breakspearmichael robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT jagustwilliam robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT kourtzizoe robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts
AT robustharmonizationapproachforcognitivedatafrommultipleaginganddementiacohorts