Cargando…
Data Sharing in Chemistry: Lessons Learned and a Case for Mandating Structured Reaction Data
[Image: see text] The past decade has seen a number of impressive developments in predictive chemistry and reaction informatics driven by machine learning applications to computer-aided synthesis planning. While many of these developments have been made even with relatively small, bespoke data sets,...
Autores principales: | Mercado, Rocío, Kearnes, Steven M., Coley, Connor W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369484/ https://www.ncbi.nlm.nih.gov/pubmed/37405398 http://dx.doi.org/10.1021/acs.jcim.3c00607 |
Ejemplares similares
-
Predictive chemistry: machine learning for reaction deployment, reaction development, and reaction discovery
por: Tu, Zhengkai, et al.
Publicado: (2022) -
Reaction profiles for quantum chemistry-computed [3 + 2] cycloaddition reactions
por: Stuyver, Thijs, et al.
Publicado: (2023) -
Lessons from the Bolivian vaccine mandate
por: Rivas, Diana Reyna Zeballos, et al.
Publicado: (2023) -
Ten lessons for data sharing with a data commons
por: Grossman, Robert L.
Publicado: (2023) -
Responsible data sharing in a big data-driven translational research platform: lessons learned
por: Kalkman, S., et al.
Publicado: (2019)