Cargando…
CNN-based lung CT registration with multiple anatomical constraints
Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a super...
Autores principales: | Hering, Alessa, Häger, Stephanie, Moltz, Jan, Lessmann, Nikolas, Heldmann, Stefan, van Ginneken, Bram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369673/ https://www.ncbi.nlm.nih.gov/pubmed/34216959 http://dx.doi.org/10.1016/j.media.2021.102139 |
Ejemplares similares
-
Quantitative evaluation of the influence of multiple MRI sequences and of pathological tissues on the registration of longitudinal data acquired during brain tumor treatment
por: Canalini, Luca, et al.
Publicado: (2022) -
Learning Deformable Image Registration with Structure Guidance Constraints for Adaptive Radiotherapy
por: Kuckertz, Sven, et al.
Publicado: (2020) -
Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing
por: Chlebus, Grzegorz, et al.
Publicado: (2018) -
Accuracy of registration algorithms in subtraction CT of the lungs: A digital phantom study
por: Grob, Dagmar, et al.
Publicado: (2019) -
MR-CT multi-atlas registration guided by fully automated brain structure segmentation with CNNs
por: Walluscheck, Sina, et al.
Publicado: (2022)