Cargando…
XGBoost-SHAP-based interpretable diagnostic framework for alzheimer’s disease
BACKGROUND: Due to the class imbalance issue faced when Alzheimer’s disease (AD) develops from normal cognition (NC) to mild cognitive impairment (MCI), present clinical practice is met with challenges regarding the auxiliary diagnosis of AD using machine learning (ML). This leads to low diagnosis p...
Autores principales: | Yi, Fuliang, Yang, Hui, Chen, Durong, Qin, Yao, Han, Hongjuan, Cui, Jing, Bai, Wenlin, Ma, Yifei, Zhang, Rong, Yu, Hongmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369804/ https://www.ncbi.nlm.nih.gov/pubmed/37491248 http://dx.doi.org/10.1186/s12911-023-02238-9 |
Ejemplares similares
-
Interpretable predictive model for shield attitude control performance based on XGboost and SHAP
por: Hu, Min, et al.
Publicado: (2022) -
An Interpretable Prediction Model for Identifying N(7)-Methylguanosine Sites Based on XGBoost and SHAP
por: Bi, Yue, et al.
Publicado: (2020) -
Estimating Bidirectional Transitions and Identifying Predictors of Mild Cognitive Impairment
por: Qin, Yao, et al.
Publicado: (2023) -
Explainable SHAP-XGBoost models for in-hospital mortality after myocardial infarction
por: Tarabanis, Constantine, et al.
Publicado: (2023) -
Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing PAHs Environmental Fate
por: Jovanovic, Gordana, et al.
Publicado: (2023)