Cargando…
Explaining compound activity predictions with a substructure-aware loss for graph neural networks
Explainable machine learning is increasingly used in drug discovery to help rationalize compound property predictions. Feature attribution techniques are popular choices to identify which molecular substructures are responsible for a predicted property change. However, established molecular feature...
Autores principales: | Amara, Kenza, Rodríguez-Pérez, Raquel, Jiménez-Luna, José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369817/ https://www.ncbi.nlm.nih.gov/pubmed/37491407 http://dx.doi.org/10.1186/s13321-023-00733-9 |
Ejemplares similares
-
Learning size-adaptive molecular substructures for explainable drug–drug interaction prediction by substructure-aware graph neural network
por: Yang, Ziduo, et al.
Publicado: (2022) -
Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking
por: Wu, Zhenxing, et al.
Publicado: (2023) -
Evaluating explainability for graph neural networks
por: Agarwal, Chirag, et al.
Publicado: (2023) -
Explainable Multilayer Graph Neural Network for cancer gene prediction
por: Chatzianastasis, Michail, et al.
Publicado: (2023) -
Explainable graph neural networks for organic cages
por: Yuan, Qi, et al.
Publicado: (2022)