Cargando…
Generalizability of foot-placement control strategies during unperturbed and perturbed gait
Control of foot placement is an essential strategy for maintaining balance during walking. During unperturbed, steady-state walking, foot placement can be accurately described as a linear function of the body’s center of mass state at midstance. However, it is uncertain if this mapping from center o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369853/ https://www.ncbi.nlm.nih.gov/pubmed/37502841 http://dx.doi.org/10.1101/2023.07.10.548298 |
Sumario: | Control of foot placement is an essential strategy for maintaining balance during walking. During unperturbed, steady-state walking, foot placement can be accurately described as a linear function of the body’s center of mass state at midstance. However, it is uncertain if this mapping from center of mass state to foot placement generalizes to larger perturbations that may be more likely to cause falls. These perturbations may cause balance disturbances and generate reactive control strategies not observed during unperturbed walking. Here, we used unpredictable changes in treadmill speed to assess the generalizability of foot placement mappings identified during unperturbed walking. We found that foot placement mappings generalized poorly from unperturbed to perturbed walking and differed for forward versus backward perturbations. We also used singular value decomposition of the mapping matrix to reveal that people were more sensitive to backward versus forward perturbations. Together, these results indicate that control of foot placement during losses of balance differs from the control strategies used during unperturbed walking. Better characterization of human balance control strategies could improve our understanding of why different neuromotor disorders result in heightened fall risk and inform the design of controllers for balance-assisting devices. |
---|