Cargando…
An interpretable deep learning framework for genome-informed precision oncology
Cancers result from aberrations in cellular signaling systems, typically resulting from driver somatic genome alterations (SGAs) in individual tumors. Precision oncology requires understanding the cellular state and selecting medications that induce vulnerability in cancer cells under such condition...
Autores principales: | Ren, Shuangxia, Cooper, Gregory F, Chen, Lujia, Lu, Xinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369905/ https://www.ncbi.nlm.nih.gov/pubmed/37503199 http://dx.doi.org/10.1101/2023.07.11.548534 |
Ejemplares similares
-
Revealing the Impact of Genomic Alterations on Cancer Cell Signaling with an Interpretable Deep Learning Model
por: Young, Jonathan D., et al.
Publicado: (2023) -
Discovering functional impacts of miRNAs in cancers using a causal deep learning model
por: Chen, Lujia, et al.
Publicado: (2018) -
Resources for Interpreting Variants in Precision Genomic Oncology Applications
por: Tsang, Hsinyi, et al.
Publicado: (2017) -
A Survey on Deep Learning for Precision Oncology
por: Wang, Ching-Wei, et al.
Publicado: (2022) -
De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based Graph Regularized Matrix Factorization
por: Ren, Shuangxia, et al.
Publicado: (2022)