Cargando…
Using machine learning enabled phenotyping to characterize nodulation in three early vegetative stages in soybean
The symbiotic relationship between soybean [Glycine max L. (Merr.)] roots and bacteria (Bradyrhizobium japonicum) lead to the development of nodules, important legume root structures where atmospheric nitrogen (N(2)) is fixed into bio‐available ammonia (NH(3)) for plant growth and development. With...
Autores principales: | Carley, Clayton N., Zubrod, Melinda J., Dutta, Somak, Singh, Asheesh K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369931/ https://www.ncbi.nlm.nih.gov/pubmed/37503354 http://dx.doi.org/10.1002/csc2.20861 |
Ejemplares similares
-
Using Machine Learning to Develop a Fully Automated Soybean Nodule Acquisition Pipeline (SNAP)
por: Jubery, Talukder Zaki, et al.
Publicado: (2021) -
Computer vision and machine learning enabled soybean root phenotyping pipeline
por: Falk, Kevin G., et al.
Publicado: (2020) -
Deep learning-based phenotyping for genome wide association studies of sudden death syndrome in soybean
por: Rairdin, Ashlyn, et al.
Publicado: (2022) -
“Canopy fingerprints” for characterizing three-dimensional point cloud data of soybean canopies
por: Young, Therin J., et al.
Publicado: (2023) -
A real-time phenotyping framework using machine learning for plant stress severity rating in soybean
por: Naik, Hsiang Sing, et al.
Publicado: (2017)