Cargando…

Strong Positive Selection Biases Identity-By-Descent-Based Inferences of Recent Demography and Population Structure in Plasmodium falciparum

Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD). Yet, strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we utilized simulations, a true IBD...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Bing, Borda, Victor, Laboulaye, Roland, Spring, Michele D., Wojnarski, Mariusz, Vesely, Brian A., Silva, Joana C., Waters, Norman C., O’Connor, Timothy D., Takala-Harrison, Shannon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370022/
https://www.ncbi.nlm.nih.gov/pubmed/37502843
http://dx.doi.org/10.1101/2023.07.14.549114
_version_ 1785077877183610880
author Guo, Bing
Borda, Victor
Laboulaye, Roland
Spring, Michele D.
Wojnarski, Mariusz
Vesely, Brian A.
Silva, Joana C.
Waters, Norman C.
O’Connor, Timothy D.
Takala-Harrison, Shannon
author_facet Guo, Bing
Borda, Victor
Laboulaye, Roland
Spring, Michele D.
Wojnarski, Mariusz
Vesely, Brian A.
Silva, Joana C.
Waters, Norman C.
O’Connor, Timothy D.
Takala-Harrison, Shannon
author_sort Guo, Bing
collection PubMed
description Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD). Yet, strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we utilized simulations, a true IBD inference algorithm, and empirical datasets from different malaria transmission settings to investigate the extent of such bias and explore potential correction strategies. We analyzed whole genome sequence data generated from 640 new and 4,026 publicly available Plasmodium falciparum clinical isolates. Our findings demonstrated that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discovered that the removal of IBD peak regions partially restored the accuracy of IBD-based inferences, with this effect contingent on the population’s background genetic relatedness. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.
format Online
Article
Text
id pubmed-10370022
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-103700222023-07-27 Strong Positive Selection Biases Identity-By-Descent-Based Inferences of Recent Demography and Population Structure in Plasmodium falciparum Guo, Bing Borda, Victor Laboulaye, Roland Spring, Michele D. Wojnarski, Mariusz Vesely, Brian A. Silva, Joana C. Waters, Norman C. O’Connor, Timothy D. Takala-Harrison, Shannon bioRxiv Article Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD). Yet, strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we utilized simulations, a true IBD inference algorithm, and empirical datasets from different malaria transmission settings to investigate the extent of such bias and explore potential correction strategies. We analyzed whole genome sequence data generated from 640 new and 4,026 publicly available Plasmodium falciparum clinical isolates. Our findings demonstrated that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discovered that the removal of IBD peak regions partially restored the accuracy of IBD-based inferences, with this effect contingent on the population’s background genetic relatedness. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings. Cold Spring Harbor Laboratory 2023-07-15 /pmc/articles/PMC10370022/ /pubmed/37502843 http://dx.doi.org/10.1101/2023.07.14.549114 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Guo, Bing
Borda, Victor
Laboulaye, Roland
Spring, Michele D.
Wojnarski, Mariusz
Vesely, Brian A.
Silva, Joana C.
Waters, Norman C.
O’Connor, Timothy D.
Takala-Harrison, Shannon
Strong Positive Selection Biases Identity-By-Descent-Based Inferences of Recent Demography and Population Structure in Plasmodium falciparum
title Strong Positive Selection Biases Identity-By-Descent-Based Inferences of Recent Demography and Population Structure in Plasmodium falciparum
title_full Strong Positive Selection Biases Identity-By-Descent-Based Inferences of Recent Demography and Population Structure in Plasmodium falciparum
title_fullStr Strong Positive Selection Biases Identity-By-Descent-Based Inferences of Recent Demography and Population Structure in Plasmodium falciparum
title_full_unstemmed Strong Positive Selection Biases Identity-By-Descent-Based Inferences of Recent Demography and Population Structure in Plasmodium falciparum
title_short Strong Positive Selection Biases Identity-By-Descent-Based Inferences of Recent Demography and Population Structure in Plasmodium falciparum
title_sort strong positive selection biases identity-by-descent-based inferences of recent demography and population structure in plasmodium falciparum
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370022/
https://www.ncbi.nlm.nih.gov/pubmed/37502843
http://dx.doi.org/10.1101/2023.07.14.549114
work_keys_str_mv AT guobing strongpositiveselectionbiasesidentitybydescentbasedinferencesofrecentdemographyandpopulationstructureinplasmodiumfalciparum
AT bordavictor strongpositiveselectionbiasesidentitybydescentbasedinferencesofrecentdemographyandpopulationstructureinplasmodiumfalciparum
AT laboulayeroland strongpositiveselectionbiasesidentitybydescentbasedinferencesofrecentdemographyandpopulationstructureinplasmodiumfalciparum
AT springmicheled strongpositiveselectionbiasesidentitybydescentbasedinferencesofrecentdemographyandpopulationstructureinplasmodiumfalciparum
AT wojnarskimariusz strongpositiveselectionbiasesidentitybydescentbasedinferencesofrecentdemographyandpopulationstructureinplasmodiumfalciparum
AT veselybriana strongpositiveselectionbiasesidentitybydescentbasedinferencesofrecentdemographyandpopulationstructureinplasmodiumfalciparum
AT silvajoanac strongpositiveselectionbiasesidentitybydescentbasedinferencesofrecentdemographyandpopulationstructureinplasmodiumfalciparum
AT watersnormanc strongpositiveselectionbiasesidentitybydescentbasedinferencesofrecentdemographyandpopulationstructureinplasmodiumfalciparum
AT oconnortimothyd strongpositiveselectionbiasesidentitybydescentbasedinferencesofrecentdemographyandpopulationstructureinplasmodiumfalciparum
AT takalaharrisonshannon strongpositiveselectionbiasesidentitybydescentbasedinferencesofrecentdemographyandpopulationstructureinplasmodiumfalciparum