Cargando…
Contextualizing protein representations using deep learning on protein networks and single-cell data
Understanding protein function and discovering molecular therapies require deciphering the cell types in which proteins act as well as the interactions between proteins. However, modeling protein interactions across diverse biological contexts, such as tissues and cell types, remains a significant c...
Autores principales: | Li, Michelle M., Huang, Yepeng, Sumathipala, Marissa, Liang, Man Qing, Valdeolivas, Alberto, Ananthakrishnan, Ashwin N., Liao, Katherine, Marbach, Daniel, Zitnik, Marinka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370131/ https://www.ncbi.nlm.nih.gov/pubmed/37503080 http://dx.doi.org/10.1101/2023.07.18.549602 |
Ejemplares similares
-
Mutation effect estimation on protein–protein interactions using deep contextualized representation learning
por: Zhou, Guangyu, et al.
Publicado: (2020) -
DeepPurpose: a deep learning library for drug–target interaction prediction
por: Huang, Kexin, et al.
Publicado: (2020) -
Multimodal representation learning for predicting molecule–disease relations
por: Wen, Jun, et al.
Publicado: (2023) -
Evolution of resilience in protein interactomes across the tree of life
por: Zitnik, Marinka, et al.
Publicado: (2019) -
Learning unsupervised contextual representations for medical synonym discovery
por: Schumacher, Elliot, et al.
Publicado: (2019)