Cargando…

The Brain Electroencephalogram Microdisplay for Precision Neurosurgery

Brain surgeries are among the most delicate clinical procedures and must be performed with the most technologically robust and advanced tools. When such surgical procedures are performed in functionally critical regions of the brain, functional mapping is applied as a standard practice that involves...

Descripción completa

Detalles Bibliográficos
Autores principales: Tchoe, Youngbin, Wu, Tianhai, U, Hoi Sang, Roth, David M., Kim, Dongwoo, Lee, Jihwan, Cleary, Daniel R., Pizarro, Patricia, Tonsfeldt, Karen J., Lee, Keundong, Chen, Po Chun, Bourhis, Andrew M., Galton, Ian, Coughlin, Brian, Yang, Jimmy C., Paulk, Angelique C., Halgren, Eric, Cash, Sydney S., Dayeh, Shadi A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370209/
https://www.ncbi.nlm.nih.gov/pubmed/37503216
http://dx.doi.org/10.1101/2023.07.19.549735
_version_ 1785077903727263744
author Tchoe, Youngbin
Wu, Tianhai
U, Hoi Sang
Roth, David M.
Kim, Dongwoo
Lee, Jihwan
Cleary, Daniel R.
Pizarro, Patricia
Tonsfeldt, Karen J.
Lee, Keundong
Chen, Po Chun
Bourhis, Andrew M.
Galton, Ian
Coughlin, Brian
Yang, Jimmy C.
Paulk, Angelique C.
Halgren, Eric
Cash, Sydney S.
Dayeh, Shadi A.
author_facet Tchoe, Youngbin
Wu, Tianhai
U, Hoi Sang
Roth, David M.
Kim, Dongwoo
Lee, Jihwan
Cleary, Daniel R.
Pizarro, Patricia
Tonsfeldt, Karen J.
Lee, Keundong
Chen, Po Chun
Bourhis, Andrew M.
Galton, Ian
Coughlin, Brian
Yang, Jimmy C.
Paulk, Angelique C.
Halgren, Eric
Cash, Sydney S.
Dayeh, Shadi A.
author_sort Tchoe, Youngbin
collection PubMed
description Brain surgeries are among the most delicate clinical procedures and must be performed with the most technologically robust and advanced tools. When such surgical procedures are performed in functionally critical regions of the brain, functional mapping is applied as a standard practice that involves direct coordinated interactions between the neurosurgeon and the clinical neurology electrophysiology team. However, information flow during these interactions is commonly verbal as well as time consuming which in turn increases the duration and cost of the surgery, possibly compromising the patient outcomes. Additionally, the grids that measure brain activity and identify the boundaries of pathological versus functional brain regions suffer from low resolution (3-10 mm contact to contact spacing) with limited conformity to the brain surface. Here, we introduce a brain intracranial electroencephalogram microdisplay (Brain-iEEG-microdisplay) which conforms to the brain to measure the brain activity and display changes in near real-time (40 Hz refresh rate) on the surface of the brain in the surgical field. We used scalable engineered gallium nitride (GaN) substrates with 6” diameter to fabricate, encapsulate, and release free-standing arrays of up to 2048 GaN light emitting diodes (μLEDs) in polyimide substrates. We then laminated the μLED arrays on the back of micro-electrocorticography (μECoG) platinum nanorod grids (PtNRGrids) and developed hardware and software to perform near real-time intracranial EEG analysis and activation of light patterns that correspond to specific cortical activities. Using the Brain-iEEG-microdisplay, we precisely ideFSntified and displayed important cortical landmarks and pharmacologically induced pathological activities. In the rat model, we identified and displayed individual cortical columns corresponding to individual whiskers and the near real-time evolution of epileptic discharges. In the pig animal model, we demonstrated near real-time mapping and display of cortical functional boundaries using somatosensory evoked potentials (SSEP) and display of responses to direct electrical stimulation (DES) from the surface or within the brain tissue. Using a dual-color Brain-iEEG-microdisplay, we demonstrated co-registration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The Brain-iEEG-microdisplay holds the promise of increasing the efficiency of diagnosis and possibly surgical treatment, thereby reducing the cost and improving patient outcomes which would mark a major advancement in neurosurgery. These advances can also be translated to broader applications in neuro-oncology and neurophysiology.
format Online
Article
Text
id pubmed-10370209
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-103702092023-07-27 The Brain Electroencephalogram Microdisplay for Precision Neurosurgery Tchoe, Youngbin Wu, Tianhai U, Hoi Sang Roth, David M. Kim, Dongwoo Lee, Jihwan Cleary, Daniel R. Pizarro, Patricia Tonsfeldt, Karen J. Lee, Keundong Chen, Po Chun Bourhis, Andrew M. Galton, Ian Coughlin, Brian Yang, Jimmy C. Paulk, Angelique C. Halgren, Eric Cash, Sydney S. Dayeh, Shadi A. bioRxiv Article Brain surgeries are among the most delicate clinical procedures and must be performed with the most technologically robust and advanced tools. When such surgical procedures are performed in functionally critical regions of the brain, functional mapping is applied as a standard practice that involves direct coordinated interactions between the neurosurgeon and the clinical neurology electrophysiology team. However, information flow during these interactions is commonly verbal as well as time consuming which in turn increases the duration and cost of the surgery, possibly compromising the patient outcomes. Additionally, the grids that measure brain activity and identify the boundaries of pathological versus functional brain regions suffer from low resolution (3-10 mm contact to contact spacing) with limited conformity to the brain surface. Here, we introduce a brain intracranial electroencephalogram microdisplay (Brain-iEEG-microdisplay) which conforms to the brain to measure the brain activity and display changes in near real-time (40 Hz refresh rate) on the surface of the brain in the surgical field. We used scalable engineered gallium nitride (GaN) substrates with 6” diameter to fabricate, encapsulate, and release free-standing arrays of up to 2048 GaN light emitting diodes (μLEDs) in polyimide substrates. We then laminated the μLED arrays on the back of micro-electrocorticography (μECoG) platinum nanorod grids (PtNRGrids) and developed hardware and software to perform near real-time intracranial EEG analysis and activation of light patterns that correspond to specific cortical activities. Using the Brain-iEEG-microdisplay, we precisely ideFSntified and displayed important cortical landmarks and pharmacologically induced pathological activities. In the rat model, we identified and displayed individual cortical columns corresponding to individual whiskers and the near real-time evolution of epileptic discharges. In the pig animal model, we demonstrated near real-time mapping and display of cortical functional boundaries using somatosensory evoked potentials (SSEP) and display of responses to direct electrical stimulation (DES) from the surface or within the brain tissue. Using a dual-color Brain-iEEG-microdisplay, we demonstrated co-registration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The Brain-iEEG-microdisplay holds the promise of increasing the efficiency of diagnosis and possibly surgical treatment, thereby reducing the cost and improving patient outcomes which would mark a major advancement in neurosurgery. These advances can also be translated to broader applications in neuro-oncology and neurophysiology. Cold Spring Harbor Laboratory 2023-07-21 /pmc/articles/PMC10370209/ /pubmed/37503216 http://dx.doi.org/10.1101/2023.07.19.549735 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Tchoe, Youngbin
Wu, Tianhai
U, Hoi Sang
Roth, David M.
Kim, Dongwoo
Lee, Jihwan
Cleary, Daniel R.
Pizarro, Patricia
Tonsfeldt, Karen J.
Lee, Keundong
Chen, Po Chun
Bourhis, Andrew M.
Galton, Ian
Coughlin, Brian
Yang, Jimmy C.
Paulk, Angelique C.
Halgren, Eric
Cash, Sydney S.
Dayeh, Shadi A.
The Brain Electroencephalogram Microdisplay for Precision Neurosurgery
title The Brain Electroencephalogram Microdisplay for Precision Neurosurgery
title_full The Brain Electroencephalogram Microdisplay for Precision Neurosurgery
title_fullStr The Brain Electroencephalogram Microdisplay for Precision Neurosurgery
title_full_unstemmed The Brain Electroencephalogram Microdisplay for Precision Neurosurgery
title_short The Brain Electroencephalogram Microdisplay for Precision Neurosurgery
title_sort brain electroencephalogram microdisplay for precision neurosurgery
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370209/
https://www.ncbi.nlm.nih.gov/pubmed/37503216
http://dx.doi.org/10.1101/2023.07.19.549735
work_keys_str_mv AT tchoeyoungbin thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT wutianhai thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT uhoisang thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT rothdavidm thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT kimdongwoo thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT leejihwan thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT clearydanielr thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT pizarropatricia thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT tonsfeldtkarenj thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT leekeundong thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT chenpochun thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT bourhisandrewm thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT galtonian thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT coughlinbrian thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT yangjimmyc thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT paulkangeliquec thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT halgreneric thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT cashsydneys thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT dayehshadia thebrainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT tchoeyoungbin brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT wutianhai brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT uhoisang brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT rothdavidm brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT kimdongwoo brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT leejihwan brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT clearydanielr brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT pizarropatricia brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT tonsfeldtkarenj brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT leekeundong brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT chenpochun brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT bourhisandrewm brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT galtonian brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT coughlinbrian brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT yangjimmyc brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT paulkangeliquec brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT halgreneric brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT cashsydneys brainelectroencephalogrammicrodisplayforprecisionneurosurgery
AT dayehshadia brainelectroencephalogrammicrodisplayforprecisionneurosurgery