Cargando…
BioREx: Improving Biomedical Relation Extraction by Leveraging Heterogeneous Datasets
OBJECTIVE: Biomedical relation extraction (RE) is the task of automatically identifying and characterizing relations between biomedical concepts from free text. RE is a central task in biomedical natural language processing (NLP) research and plays a critical role in many downstream applications, su...
Autores principales: | Lai, Po-Ting, Wei, Chih-Hsuan, Luo, Ling, Chen, Qingyu, Lu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370213/ https://www.ncbi.nlm.nih.gov/pubmed/37502629 |
Ejemplares similares
-
BioRED: a rich biomedical relation extraction dataset
por: Luo, Ling, et al.
Publicado: (2022) -
BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale
por: Chen, Qingyu, et al.
Publicado: (2020) -
Leveraging word embeddings and medical entity extraction for biomedical dataset retrieval using unstructured texts
por: Wang, Yanshan, et al.
Publicado: (2017) -
Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task
por: Wei, Chih-Hsuan, et al.
Publicado: (2016) -
Bioformer: an efficient transformer language model for biomedical text mining
por: Fang, Li, et al.
Publicado: (2023)