Cargando…

The Noise Within: Signal-to-Noise Enhancement via Coherent Wave Amplification in the Mammalian Cochlea

The extraordinary sensitivity of the mammalian inner ear has captivated scientists for decades, largely due to the crucial role played by the outer hair cells (OHCs) and their unique electromotile properties. Typically arranged in three rows along the sensory epithelium, the OHCs work in concert via...

Descripción completa

Detalles Bibliográficos
Autores principales: Altoè, Alessandro, Shera, Christopher A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370218/
https://www.ncbi.nlm.nih.gov/pubmed/37502623
Descripción
Sumario:The extraordinary sensitivity of the mammalian inner ear has captivated scientists for decades, largely due to the crucial role played by the outer hair cells (OHCs) and their unique electromotile properties. Typically arranged in three rows along the sensory epithelium, the OHCs work in concert via mechanisms collectively referred to as the "cochlear amplifier" to boost the cochlear response to faint sounds. While simplistic views attribute this enhancement solely to the OHC-based increase in cochlear gain, the inevitable presence of internal noise requires a more rigorous analysis. Achieving a genuine boost in sensitivity through amplification requires that signals be amplified more than internal noise, and this requirement presents the cochlea with an intriguing challenge. Here, we analyze the effects of spatially distributed cochlear-like amplification on both signals and internal noise.