Cargando…
On the limitations of large language models in clinical diagnosis
BACKGROUND: The potential of large language models (LLM) such as GPT to support complex tasks such as differential diagnosis has been a subject of debate, with some ascribing near sentient abilities to the models and others claiming that LLMs merely perform “autocomplete on steroids”. A recent study...
Autores principales: | Reese, Justin T, Danis, Daniel, Caulfied, J Harry, Casiraghi, Elena, Valentini, Giorgio, Mungall, Christopher J, Robinson, Peter N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370243/ https://www.ncbi.nlm.nih.gov/pubmed/37503093 http://dx.doi.org/10.1101/2023.07.13.23292613 |
Ejemplares similares
-
An expectation–maximization framework for comprehensive prediction of isoform-specific functions
por: Karlebach, Guy, et al.
Publicado: (2023) -
Phenotype‐driven approaches to enhance variant prioritization and diagnosis of rare disease
por: Jacobsen, Julius O. B., et al.
Publicado: (2022) -
Gene Set Summarization using Large Language Models
por: Joachimiak, Marcin P., et al.
Publicado: (2023) -
Predicting nutrition and environmental factors associated with female reproductive disorders using a knowledge graph and random forests
por: Chan, Lauren E, et al.
Publicado: (2023) -
Supervised learning with word embeddings derived from PubMed captures latent knowledge about protein kinases and cancer
por: Ravanmehr, Vida, et al.
Publicado: (2021)