Cargando…

Rapid hydrogel formation via tandem visible light photouncaging and bioorthogonal ligation

The formation of benign polymer scaffolds in water using green-light-reactive photocages is described. These efforts pave an avenue toward the fabrication of synthetic scaffolds that can facilitate the study of cellular events for disease diagnosis and treatment. First, a series of boron dipyrrometh...

Descripción completa

Detalles Bibliográficos
Autores principales: Chung, Kun-You, Halwachs, Kathleen N., Lu, Pengtao, Sun, Kaihong, Silva, Hope A., Rosales, Adrianne M., Page, Zachariah A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370463/
https://www.ncbi.nlm.nih.gov/pubmed/37496708
http://dx.doi.org/10.1016/j.xcrp.2022.101185
Descripción
Sumario:The formation of benign polymer scaffolds in water using green-light-reactive photocages is described. These efforts pave an avenue toward the fabrication of synthetic scaffolds that can facilitate the study of cellular events for disease diagnosis and treatment. First, a series of boron dipyrromethene (BODIPY) photocages with nitrogen-containing nucleophiles were examined to determine structure-reactivity relationships, which resulted in a >1,000× increase in uncaging yield. Subsequently, photoinduced hydrogel formation in 90 wt % water was accomplished via biorthogonal carbonyl condensation using hydrophilic polymer scaffolds separately containing BODIPY photocages and ortho-phthalaldehyde (OPA) moieties. Spatiotemporal control is demonstrated with light on/off experiments to modulate gel stiffness and masking to provide <100 μm features. Biocompatability of the method was shown through pre-/post-crosslinking cell viability studies. Short term, these studies are anticipated to guide translation to emergent additive manufacturing technology, which, longer term, will enable the development of 3D cell cultures for tissue engineering applications.