Cargando…
Predicting nutrition and environmental factors associated with female reproductive disorders using a knowledge graph and random forests
OBJECTIVE: Female reproductive disorders (FRDs) are common health conditions that may present with significant symptoms. Diet and environment are potential areas for FRD interventions. We utilized a knowledge graph (KG) method to predict factors associated with common FRDs (e.g., endometriosis, ovar...
Autores principales: | Chan, Lauren E, Casiraghi, Elena, Putman, Tim, Reese, Justin, Harmon, Quaker E., Schaper, Kevin, Hedge, Harshad, Valentini, Giorgio, Schmitt, Charles, Motsinger-Reif, Alison, Hall, Janet E, Mungall, Christopher J, Robinson, Peter N, Haendel, Melissa A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371183/ https://www.ncbi.nlm.nih.gov/pubmed/37502882 http://dx.doi.org/10.1101/2023.07.14.23292679 |
Ejemplares similares
-
KG-Hub—building and exchanging biological knowledge graphs
por: Caufield, J Harry, et al.
Publicado: (2023) -
On the limitations of large language models in clinical diagnosis
por: Reese, Justin T, et al.
Publicado: (2023) -
An expectation–maximization framework for comprehensive prediction of isoform-specific functions
por: Karlebach, Guy, et al.
Publicado: (2023) -
Using knowledge graphs to infer gene expression in plants
por: Thessen, Anne E., et al.
Publicado: (2023) -
Metformin is Associated with Reduced COVID-19 Severity in Patients with Prediabetes
por: Chan, Lauren E., et al.
Publicado: (2022)