Cargando…
PreCanCell: An ensemble learning algorithm for predicting cancer and non-cancer cells from single-cell transcriptomes
We propose PreCanCell, a novel algorithm for predicting malignant and non-malignant cells from single-cell transcriptomes. PreCanCell first identifies the differentially expressed genes (DEGs) between malignant and non-malignant cells commonly in five common cancer types-associated single-cell trans...
Autores principales: | Yang, Tao, Yan, Qiyu, Long, Rongzhuo, Liu, Zhixian, Wang, Xiaosheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371765/ https://www.ncbi.nlm.nih.gov/pubmed/37501705 http://dx.doi.org/10.1016/j.csbj.2023.07.009 |
Ejemplares similares
-
ATAXIC: An Algorithm to Quantify Transcriptomic Perturbation Heterogeneity in Single Cancer Cells
por: Liu, Qian, et al.
Publicado: (2022) -
Identification of key molecules in COVID-19 patients significantly correlated with clinical outcomes by analyzing transcriptomic data
por: Dong, Zehua, et al.
Publicado: (2022) -
Chord: an ensemble machine learning algorithm to identify doublets in single-cell RNA sequencing data
por: Xiong, Ke-Xu, et al.
Publicado: (2022) -
Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome
por: Zhang, Yingkun, et al.
Publicado: (2022) -
Margin-Based Pareto Ensemble Pruning: An Ensemble Pruning Algorithm That Learns to Search Optimized Ensembles
por: Hu, Ruihan, et al.
Publicado: (2019)