Cargando…
Awareness of the relative quality of spatial working memory representations
Working memory (WM) is the ability to maintain and manipulate information no longer accessible in the environment. The brain maintains WM representations over delay periods in noisy population-level activation patterns, resulting in variability in WM representations across items and trials. It is es...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371925/ https://www.ncbi.nlm.nih.gov/pubmed/36720782 http://dx.doi.org/10.3758/s13414-022-02646-5 |
_version_ | 1785078256691576832 |
---|---|
author | Li, Alison Y. Sprague, Thomas C. |
author_facet | Li, Alison Y. Sprague, Thomas C. |
author_sort | Li, Alison Y. |
collection | PubMed |
description | Working memory (WM) is the ability to maintain and manipulate information no longer accessible in the environment. The brain maintains WM representations over delay periods in noisy population-level activation patterns, resulting in variability in WM representations across items and trials. It is established that participants can introspect aspects of the quality of WM representations, and that they can accurately compare which of several WM representations of stimulus features like orientation or color is better on each trial. However, whether this ability to evaluate and compare the quality of multiple WM representations extends to spatial WM tasks remains unknown. Here, we employed a memory-guided saccade task to test recall errors for remembered spatial locations when participants were allowed to choose the most precise representation to report. Participants remembered either one or two spatial locations over a delay and reported one item’s location with a saccade. On trials with two spatial locations, participants reported either the spatial location of a randomly cued item, or the location of the stimulus they remembered best. We found a significant improvement in recall error and increase in response time (RT) when participants reported their best-remembered item compared with trials in which they were randomly cued. These results demonstrate that participants can accurately introspect the relative quality of neural WM representations for spatial position, consistent with previous observations for other stimulus features, and support a model of WM coding involving noisy representations across items and trials. |
format | Online Article Text |
id | pubmed-10371925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-103719252023-07-28 Awareness of the relative quality of spatial working memory representations Li, Alison Y. Sprague, Thomas C. Atten Percept Psychophys Article Working memory (WM) is the ability to maintain and manipulate information no longer accessible in the environment. The brain maintains WM representations over delay periods in noisy population-level activation patterns, resulting in variability in WM representations across items and trials. It is established that participants can introspect aspects of the quality of WM representations, and that they can accurately compare which of several WM representations of stimulus features like orientation or color is better on each trial. However, whether this ability to evaluate and compare the quality of multiple WM representations extends to spatial WM tasks remains unknown. Here, we employed a memory-guided saccade task to test recall errors for remembered spatial locations when participants were allowed to choose the most precise representation to report. Participants remembered either one or two spatial locations over a delay and reported one item’s location with a saccade. On trials with two spatial locations, participants reported either the spatial location of a randomly cued item, or the location of the stimulus they remembered best. We found a significant improvement in recall error and increase in response time (RT) when participants reported their best-remembered item compared with trials in which they were randomly cued. These results demonstrate that participants can accurately introspect the relative quality of neural WM representations for spatial position, consistent with previous observations for other stimulus features, and support a model of WM coding involving noisy representations across items and trials. Springer US 2023-01-31 2023 /pmc/articles/PMC10371925/ /pubmed/36720782 http://dx.doi.org/10.3758/s13414-022-02646-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Li, Alison Y. Sprague, Thomas C. Awareness of the relative quality of spatial working memory representations |
title | Awareness of the relative quality of spatial working memory representations |
title_full | Awareness of the relative quality of spatial working memory representations |
title_fullStr | Awareness of the relative quality of spatial working memory representations |
title_full_unstemmed | Awareness of the relative quality of spatial working memory representations |
title_short | Awareness of the relative quality of spatial working memory representations |
title_sort | awareness of the relative quality of spatial working memory representations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371925/ https://www.ncbi.nlm.nih.gov/pubmed/36720782 http://dx.doi.org/10.3758/s13414-022-02646-5 |
work_keys_str_mv | AT lialisony awarenessoftherelativequalityofspatialworkingmemoryrepresentations AT spraguethomasc awarenessoftherelativequalityofspatialworkingmemoryrepresentations |