Cargando…
Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition
In the field of machine intelligence and ubiquitous computing, there has been a growing interest in human activity recognition using wearable sensors. Over the past few decades, researchers have extensively explored learning-based methods to develop effective models for identifying human behaviors....
Autores principales: | Mekruksavanich, Sakorn, Jitpattanakul, Anuchit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371984/ https://www.ncbi.nlm.nih.gov/pubmed/37495634 http://dx.doi.org/10.1038/s41598-023-39080-y |
Ejemplares similares
-
LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes
por: Mekruksavanich, Sakorn, et al.
Publicado: (2021) -
Deep Residual Network for Smartwatch-Based User Identification through Complex Hand Movements
por: Mekruksavanich, Sakorn, et al.
Publicado: (2022) -
Deep Learning Approaches for Continuous Authentication Based on Activity Patterns Using Mobile Sensing
por: Mekruksavanich, Sakorn, et al.
Publicado: (2021) -
Multiscale Hybrid Convolutional Deep Neural Networks with Channel Attention
por: Yang, Hua, et al.
Publicado: (2022) -
Light-efficient channel attention in convolutional neural networks for tic recognition in the children with tic disorders
por: Geng, Fudi, et al.
Publicado: (2022)