Cargando…
A transfer learning-based multimodal neural network combining metadata and multiple medical images for glaucoma type diagnosis
Glaucoma is an acquired optic neuropathy, which can lead to irreversible vision loss. Deep learning(DL), especially convolutional neural networks(CNN), has achieved considerable success in the field of medical image recognition due to the availability of large-scale annotated datasets and CNNs. Howe...
Autores principales: | Li, Yi, Han, Yujie, Li, Zihan, Zhong, Yi, Guo, Zhifen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372152/ https://www.ncbi.nlm.nih.gov/pubmed/37495578 http://dx.doi.org/10.1038/s41598-022-27045-6 |
Ejemplares similares
-
A Multimodal Classification Architecture for the Severity Diagnosis of Glaucoma Based on Deep Learning
por: Yi, Sanli, et al.
Publicado: (2022) -
A deep learning based multimodal fusion model for skin lesion diagnosis using smartphone collected clinical images and metadata
por: Ou, Chubin, et al.
Publicado: (2022) -
A multimodal transformer to fuse images and metadata for skin disease classification
por: Cai, Gan, et al.
Publicado: (2022) -
Kidney Cancer Diagnosis and Surgery Selection by Machine Learning from CT Scans Combined with Clinical Metadata
por: Mahmud, Sakib, et al.
Publicado: (2023) -
A programmatic view of metadata, metadata services, and metadata flow in ATLAS
por: Malon, D, et al.
Publicado: (2012)