Cargando…

Impacts of seasonal variations and wastewater discharge on river quality and associated human health risks: A case of northwest Dhaka, Bangladesh

Surface water pollution caused by the discharge of effluents from industrial estates has become a major concern for Dhaka (Bangladesh). This study aims to have a concise look at the severe river water pollution, mainly from effluents discharged from the tannery village. Effluent samples were collect...

Descripción completa

Detalles Bibliográficos
Autores principales: Hassan, Hazzaz Bin, Moniruzzaman, Md., Majumder, Ratan Kumar, Ahmed, Fowzia, Quaiyum Bhuiyan, Md. Abdul, Ahsan, Md. Ariful, Al-Asad, Hafiz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372231/
https://www.ncbi.nlm.nih.gov/pubmed/37519722
http://dx.doi.org/10.1016/j.heliyon.2023.e18171
Descripción
Sumario:Surface water pollution caused by the discharge of effluents from industrial estates has become a major concern for Dhaka (Bangladesh). This study aims to have a concise look at the severe river water pollution, mainly from effluents discharged from the tannery village. Effluent samples were collected from five ejected points, including the central effluent treatment plant (CETP), twenty adjacent river water, and two pond water nearby Hemayetpur, Savar. Thirty-one parameters have been observed at these sampling points for three seasons, from April 2021 to January 2022. The results obtained from water quality indices, i.e., water quality index (WQI), entropy water quality index (EWQI), and irrigation water quality index (IWQI), show that most studied surface water samples ranked “unsuitable” for consumption, irrigation, and anthropogenic purposes. The highest health risk was observed downstream of Hemayetpur city at the Savar CETP discharge site, indicating higher levels of heavy metal in the river water following the tannery village. Carcinogenic and non-carcinogenic human health risks could be triggered mainly by water consumption as concentrations of arsenic (As), chromium (Cr), nickel (Ni), and lead (Pb) exceeded the upper benchmark of 1 × 10(−4) for adults and children. The results of the carcinogenic risk assessment revealed that children were more vulnerable to health hazards, and quick corrective action is required to control the increased levels of heavy metals at all sample locations. Therefore, through bioaccumulation, human health and the environment are affected in these areas. Using river water for consumption, household work, or even irrigation purposes is not advisable. This study's result highlighted that properly implementing compatible policies and programs is required to improve effluent treatment methods and provide biodegradability to the Dhaleshwari River.