Cargando…
Implementing a digital comprehensive myopia prevention and control strategy for children and adolescents in China: a cost-effectiveness analysis
BACKGROUND: Children and adolescents’ myopia is a major public problem. Although the clinical effect of various interventions has been extensively studied, there is a lack of national-level and integral assessments to simultaneously quantify the economics and effectiveness of comprehensive myopia pr...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372367/ https://www.ncbi.nlm.nih.gov/pubmed/37520278 http://dx.doi.org/10.1016/j.lanwpc.2023.100837 |
Sumario: | BACKGROUND: Children and adolescents’ myopia is a major public problem. Although the clinical effect of various interventions has been extensively studied, there is a lack of national-level and integral assessments to simultaneously quantify the economics and effectiveness of comprehensive myopia prevention and control programs. We aimed to compare the cost-effectiveness between traditional myopia prevention and control strategy, digital comprehensive myopia prevention and control strategy and school-based myopia screening program in China. METHODS: A Markov model was used to compare the cost-utility and cost-effectiveness among school-based myopia screening, traditional myopia prevention and control strategy, and digital comprehensive myopia prevention and control strategy among 6 to 18-year-old rural and urban schoolchildren. Parameters were collected from published sources. The primary outcomes were quality-adjusted life-year, disability-adjusted life-year, incremental cost-utility ratio, and incremental cost-effectiveness ratio. Extensive sensitivity analyses were performed to test the robustness and sensitivity of base-case analysis. FINDINGS: Compared with school-based myopia screening strategy, after implementing digital comprehensive myopia prevention and control strategy, the prevalence of myopia among 18-year-old students in rural and urban areas was reduced by 3.79% and 3.48%, respectively. The incremental cost-utility ratio per quality-adjusted life-year gained with the digital myopia management plan ($11,301 for rural setting, and $10,707 for urban setting) was less than 3 times the per capita gross domestic product in rural settings ($30,501) and less than 1 time the per capita gross domestic product in urban settings ($13,856). In cost-effectiveness analysis, the incremental cost-effectiveness ratio produced by digital comprehensive myopia management strategy ($37,446 and $41,814 per disability-adjusted life-year averted in rural and urban settings) slightly exceeded the cost-effectiveness threshold. When assuming perfect compliance, full coverage of outdoor activities and spectacles satisfied the cost-effectiveness threshold, and full coverage of outdoor activities produced the lowest cost ($321 for rural settings and $808 for urban settings). INTERPRETATIONS: Health economic evidence confirmed the cost-effectiveness of promoting digital comprehensive myopia prevention and control strategies for schoolchildren at the national level. Sufficient evidence provides an economic and public health reference for further action by governments, policy-makers and other myopia-endemic countries. FUNDING: National Natural Science Foundation of China, NSFC (82171051), Beijing Natural Science Foundation (JQ20029), Capital Health Research and Development of Special (2020-2-1081), National Natural Science Foundation of China, NSFC (82071000), National Natural Science Foundation of China, NSFC (8197030562). |
---|